Diagenode

CPEB1 coordinates alternative 3'-UTR formation with translational regulation.


Bava FA, Eliscovich C, Ferreira PG, Miñana B, Ben-Dov C, Guigó R, Valcárcel J, Méndez R

More than half of mammalian genes generate multiple messenger RNA isoforms that differ in their 3' untranslated regions (3' UTRs) and therefore in regulatory sequences, often associated with cell proliferation and cancer; however, the mechanisms coordinating alternative 3'-UTR processing for specific mRNA populations remain poorly defined. Here we report that the cytoplasmic polyadenylation element binding protein 1 (CPEB1), an RNA-binding protein that regulates mRNA translation, also controls alternative 3'-UTR processing. CPEB1 shuttles to the nucleus, where it co-localizes with splicing factors and mediates shortening of hundreds of mRNA 3' UTRs, thereby modulating their translation efficiency in the cytoplasm. CPEB1-mediated 3'-UTR shortening correlates with cell proliferation and tumorigenesis. CPEB1 binding to pre-mRNAs not only directs the use of alternative polyadenylation sites, but also changes alternative splicing by preventing U2AF65 recruitment. Our results reveal a novel function of CPEB1 in mediating alternative 3'-UTR processing, which is coordinated with regulation of mRNA translation, through its dual nuclear and cytoplasmic functions.

Tags
Bioruptor
Cell Lysis
Western Blot

Share this article

Published
March, 2013

Source

Events

  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics