Diagenode

An interspecies analysis reveals a key role for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment


Lynch MD, Smith AJH, De Gobbi1 M, Flenley M, Hughes JR, Vernimmen D, Ayyub H, Sharpe JA, Sloane-Stanley JA, Sutherland L, Meek S, Burdon T, Gibbons RJ, Garrick D, Higgs DR

The role of DNA sequence in determining chromatin state is incompletely understood.We have previously demonstrated that large chromosomal segments from human cells recapitulate their native chromatin state in mouse cells, but the relative contribution of local sequences versus their genomic context remains unknown. In this study, we compare orthologous chromosomal regions for which the human locus establishes prominent sites of Polycomb complex recruitment in pluripotent stem cells, whereas the corresponding mouse locus does not. Using recombinationmediated cassette exchange at the mouse locus, we establish the primacy of local sequences in the encoding of chromatin state. We show that the signal for chromatin bivalency is redundantly encoded across a bivalent domain and that this reflects competition between Polycomb complex recruitment and transcriptional activation. Furthermore, our results suggest that a high density of unmethylated CpG dinucleotides is sufficient for vertebrate Polycomb recruitment. This model is supported by analysis of DNA methyltransferase- deficient embryonic stem cells.

Tags
Bioruptor
Chromatin Shearing
ChIP-seq

Share this article

Source

Events

  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics