Diagenode

Mammalian HCA66 protein is required for both ribosome synthesis and centriole duplication.


Bonnart C, Gérus M, Hoareau-Aveilla C, Kiss T, Caizergues-Ferrer M, Henry Y, Henras AK

Ribosome production, one of the most energy-consuming biosynthetic activities in living cells, is adjusted to growth conditions and coordinated with the cell cycle. Connections between ribosome synthesis and cell cycle progression have been described, but the underlying mechanisms remain only partially understood. The human HCA66 protein was recently characterized as a component of the centrosome, the major microtubule-organizing center (MTOC) in mammalian cells, and was shown to be required for centriole duplication and assembly of the mitotic spindle. We show here that HCA66 is also required for nucleolar steps of the maturation of the 40S ribosomal subunit and therefore displays a dual function. Overexpression of a dominant negative version of HCA66, accumulating at the centrosome but absent from the nucleoli, alters centrosome function but has no effect on pre-rRNA processing, suggesting that HCA66 acts independently in each process. In yeast and HeLa cells, depletion of MTOC components does not impair ribosome synthesis. Hence our results suggest that both in yeast and human cells, assembly of a functional MTOC and ribosome synthesis are not closely connected processes.

Tags
Bioruptor
Cell Lysis
Western Blot

Share this article

Published
March, 2012

Source

Events

  • London Calling 2024
    London, UK
    May 21-May 24, 2024
  • Symposium of the Young Scientist Association
    Vienna, Austria
    May 28-May 29, 2024
  • ESHG 2024
    Berlin, Germany
    Jun 1-Jun 4, 2024
  • CLEPIC 2024
    Warsaw, Poland
    Jun 5-Jun 7, 2024
  • EACR 2024
    Rotterdam, Netherlands
    Jun 10-Jun 13, 2024
  • Chromatin meets South 2024
    Marseille, France
    Jun 13-Jun 14, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy   |   Diagenode Diagnostics