Diagenode

Senescence-associated lncRNAs: senescence-associated long noncoding RNAs.


Abdelmohsen K, Panda A, Kang MJ, Xu J, Selimyan R, Yoon JH, Martindale JL, De S, Wood WH, Becker KG, Gorospe M

Noncoding RNAs include small transcripts, such as microRNAs and piwi-interacting RNAs, and a wide range of long noncoding RNAs (lncRNAs). Although many lncRNAs have been identified, only a small number of lncRNAs have been characterized functionally. Here, we sought to identify lncRNAs differentially expressed during replicative senescence. We compared lncRNAs expressed in proliferating, early-passage, 'young' human diploid WI-38 fibroblasts [population doubling (PDL) 20] with those expressed in senescent, late-passage, 'old' fibroblasts (PDL 52) by RNA sequencing (RNA-Seq). Numerous transcripts in all lncRNA groups (antisense lncRNAs, pseudogene-encoded lncRNAs, previously described lncRNAs and novel lncRNAs) were validated using reverse transcription (RT) and real-time, quantitative (q)PCR. Among the novel senescence-associated lncRNAs (SAL-RNAs) showing lower abundance in senescent cells, SAL-RNA1 (XLOC_023166) was found to delay senescence, because reducing SAL-RNA1 levels enhanced the appearance of phenotypic traits of senescence, including an enlarged morphology, positive β-galactosidase activity, and heightened p53 levels. Our results reveal that the expression of known and novel lncRNAs changes with senescence and suggests that SAL-RNAs play direct regulatory roles in this important cellular process.

Tags
DNA shearing
Bioruptor

Share this article

Published
June, 2013

Source

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy