Diagenode

Lhx2 interacts with the NuRD complex and regulates cortical neuron subtype determinants Fezf2 and Sox11


Muralidharan B. et al.

n the developing cerebral cortex, sequential transcriptional programs take neuroepithelial cells from proliferating progenitors to differentiated neurons with unique molecular identities. The regulatory changes that occur in the chromatin of the progenitors are not well understood. During deep layer neurogenesis, we show that transcription factor Lhx2 binds to distal regulatory elements of Fezf2 and Sox11, critical determinants of neuron subtype identity in the mouse neocortex. We demonstrate that Lhx2 binds to the NuRD histone remodeling complex subunits LSD1, HDAC2, and RBBP4, which are proximal regulators of the epigenetic state of chromatin. When Lhx2 is absent, active histone marks at the Fezf2 and Sox11 loci are increased. Loss of Lhx2 produces an increase, and overexpression of Lhx2 causes a decrease, in layer 5 Fezf2 and Ctip2 expressing neurons. Our results provide mechanistic insight into how Lhx2 acts as a necessary and sufficient regulator of genes that control cortical neuronal subtype identity.

Tags
Antibody

Share this article

Published
December, 2016

Source

Products used in this publication

  • ChIP-seq Grade
    C15410030
    H3K4me3 polyclonal antibody
  • ChIP-seq Grade
    C15410004
    H3K9ac polyclonal antibody

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy