Zhang X, Wang Y, Chiang HC, Hsieh YP, Lu C, Park BH, Jatoi I, Jin VX, Hu Y, Li R
BACKGROUND: BRCA1-associated breast cancer originates from luminal progenitor cells. BRCA1 functions in multiple biological processes, including double-strand break repair, replication stress suppression, transcriptional regulation, and chromatin reorganization. While non-malignant cells carrying cancer-predisposing BRCA1 mutations exhibit increased genomic instability, it remains unclear whether BRCA1 haploinsufficiency affects transcription and chromatin dynamics in breast epithelial cells. METHODS: H3K27ac-associated super-enhancers were compared in primary breast epithelial cells from BRCA1 mutation carriers (BRCA1) and non-carriers (BRCA1). Non-tumorigenic MCF10A breast epithelial cells with engineered BRCA1 haploinsufficiency were used to confirm the H3K27ac changes. The impact of BRCA1 mutations on enhancer function and enhancer-promoter looping was assessed in MCF10A cells. RESULTS: Here, we show that primary mammary epithelial cells from women with BRCA1 mutations display significant loss of H3K27ac-associated super-enhancers. These BRCA1-dependent super-enhancers are enriched with binding motifs for the GATA family. Non-tumorigenic BRCA1 MCF10A cells recapitulate the H3K27ac loss. Attenuated histone mark and enhancer activity in these BRCA1 MCF10A cells can be partially restored with wild-type BRCA1. Furthermore, chromatin conformation analysis demonstrates impaired enhancer-promoter looping in BRCA1 MCF10A cells. CONCLUSIONS: H3K27ac-associated super-enhancer loss is a previously unappreciated functional deficiency in ostensibly normal BRCA1 mutation-carrying breast epithelium. Our findings offer new mechanistic insights into BRCA1 mutation-associated transcriptional and epigenetic abnormality in breast epithelial cells and tissue/cell lineage-specific tumorigenesis.