Wang X, Venugopal C, Manoranjan B, McFarlane N, O'Farrell E, Nolte S, Gunnarsson T, Hollenberg R, Kwiecien J, Northcott P, Taylor MD, Hawkins C, Singh SK
Bmi1 is a key stem cell regulatory gene implicated in the pathogenesis of many aggressive cancers, including medulloblastoma. Overexpression of Bmi1 promotes cell proliferation and is required for hedgehog (Hh) pathway-driven tumorigenesis. This study aimed to determine if Sonic hedgehog (Shh) modulates the key stem cell regulatory gene Bmi1 in childhood medulloblastoma brain tumor-initiating cells (BTICs). Although current literature suggests that there is a correlation between Shh pathway genes and Bmi1 expression, it is unclear whether there is indeed a direct regulatory mechanism. To address whether Shh induces expression of Bmi1, stem cell-enriched populations from medulloblastoma cell lines and primary samples were treated with Shh ligand and KAAD-cyclopamine (Shh antagonist). Our data indicate that Bmi1 expression positively correlates with increasing Shh ligand concentrations. Chromatin immunoprecipitation reveals that Gli1 preferentially binds to the Bmi1 promoter, and Bmi1 transcript levels are increased and decreased by Gli1 overexpression and downregulation, respectively. Knockdown experiments of Bmi1 in vitro and in vivo demonstrate that Hh signaling not only drives Bmi1 expression, but a feedback mechanism exists wherein downstream effectors of Bmi1 may, in turn, activate Hh pathway genes. These findings implicate Bmi1 and Hh as mutually indispensable pathways in medulloblastoma BTIC maintenance. Recent molecular characterization of medulloblastoma also reveals that Bmi1 is overexpressed across all subgroups of medulloblastoma, particularly in the most aggressive subtypes. Lastly, despite recent identification of BTIC markers, the molecular characterization of these cell populations remains unclear. In this work, we propose that the BTIC marker CD133 may segregate a cell population with a Hh-receptor phenotype, thus demonstrating a cell-cell interaction between the CD133+ Hh receptor cells and the CD133- Hh-secreting cells.