Diagenode

Chromatin immunoprecipitation from fixed clinical tissues reveals tumor-specific enhancer profiles.


Cejas P et al.

Extensive cross-linking introduced during routine tissue fixation of clinical pathology specimens severely hampers chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) analysis from archived tissue samples. This limits the ability to study the epigenomes of valuable, clinically annotated tissue resources. Here we describe fixed-tissue chromatin immunoprecipitation sequencing (FiT-seq), a method that enables reliable extraction of soluble chromatin from formalin-fixed paraffin-embedded (FFPE) tissue samples for accurate detection of histone marks. We demonstrate that FiT-seq data from FFPE specimens are concordant with ChIP-seq data from fresh-frozen samples of the same tumors. By using multiple histone marks, we generate chromatin-state maps and identify cis-regulatory elements in clinical samples from various tumor types that can readily allow us to distinguish between cancers by the tissue of origin. Tumor-specific enhancers and superenhancers that are elucidated by FiT-seq analysis correlate with known oncogenic drivers in different tissues and can assist in the understanding of how chromatin states affect gene regulation.

Tags
Antibody

Share this article

Published
April, 2016

Source

Products used in this publication

  • cut and tag antibody icon
    C15410194
    H3K4me1 polyclonal antibody
  • cut and tag antibody icon
    C15410003-50
    H3K4me3 polyclonal antibody

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy