Diagenode

A SOX2-engineered epigenetic silencer factor represses the glioblastomagenetic program and restrains tumor development.


Benedetti V. et al.

Current therapies remain unsatisfactory in preventing the recurrence of glioblastoma multiforme (GBM), which leads to poor patient survival. By rational engineering of the transcription factor SOX2, a key promoter of GBM malignancy, together with the Kruppel-associated box and DNA methyltransferase3A/L catalytic domains, we generated a synthetic repressor named SOX2 epigenetic silencer (SES), which induces the transcriptional silencing of its original targets. By doing so, SES kills both glioma cell lines and patient-derived cancer stem cells in vitro and in vivo. SES expression, through local viral delivery in mouse xenografts, induces strong regression of human tumors and survival rescue. Conversely, SES is not harmful to neurons and glia, also thanks to a minimal promoter that restricts its expression in mitotically active cells, rarely present in the brain parenchyma. Collectively, SES produces a significant silencing of a large fraction of the SOX2 transcriptional network, achieving high levels of efficacy in repressing aggressive brain tumors.

Tags
MagMeDIP kit
CUT&Tag

Share this article

Published
August, 2022

Source

Products used in this publication

  • default alt
    C01070001
    pA-Tn5 Transposase - loaded
  • MagMeDIP qPCR Kit box
    C02010021
    MagMeDIP qPCR kit

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy