Diagenode

ARMC5 selectively degrades SCAP-free SREBF1 and is essential for fatty acid desaturation in adipocytes


Akifumi Uota et al.

SREBF1 plays the central role in lipid metabolism. It has been known that full-length SREBF1 that did not associate with SCAP (SCAP-free SREBF1) is actively degraded, but its molecular mechanism and its biological meaning remain unclear. ARMC5-CUL3 complex was recently identified as E3 ubiquitin ligase of full-length SREBF. Although ARMC5 was involved in SREBF pathway in adrenocortical cells, the role of ARMC5 in adipocytes has not been investigated. In this study, adipocyte-specific Armc5 knockout mice were generated. In the white adipose tissue (WAT) of these mice, all the stearoyl-CoA desaturase (Scd) were drastically downregulated. Consistently, unsaturated fatty acids were decreased and saturated fatty acids were increased. The protein amount of full-length SREBF1 were increased, but ATAC-Seq peaks at the SREBF1-binding sites were markedly diminished around the Scd1 locus in the WAT of Armc5 knockout mice. Armc5-deficient 3T3-L1 adipocytes also exhibited downregulation of Scd. Mechanistically, disruption of Armc5 restored decreased full-length SREBF1 in CHO cells deficient for Scap. Overexpression of Scap inhibited ARMC5-mediated degradation of full-length SREBF1, and overexpression of Armc5 increased nuclear SREBF1/full-length SREBF1 ratio and SREBF1 transcriptional activity in the presence of exogenous SCAP. These results demonstrated that ARMC5 selectively removes SCAP-free SREBF1 and stimulates SCAP-mediated SREBF1 processing, hence is essential for fatty acid desaturation in vivo.

Tags
Tagmentase

Share this article

Published
November, 2024

Source

Products used in this publication

  • Tubes
    C01070012-30
    Tagmentase (Tn5 transposase) – loaded EARLY ACCESS

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy