Notice (8): Undefined variable: solution_of_interest [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp'
$dataForView = array(
'language' => 'en',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'product' => array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Group' => array(
'Group' => array(
[maximum depth reached]
),
'Master' => array(
[maximum depth reached]
),
'Product' => array(
[maximum depth reached]
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
)
),
'Category' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
)
),
'Document' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
),
(int) 6 => array(
[maximum depth reached]
),
(int) 7 => array(
[maximum depth reached]
)
)
),
'meta_canonical' => 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
)
$language = 'en'
$meta_keywords = ''
$meta_description = 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.'
$meta_title = 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode'
$product = array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
)
),
'Group' => array(
'Group' => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
),
'Master' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20'
),
'Product' => array(
(int) 0 => array(
[maximum depth reached]
)
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
'id' => '20',
'position' => '10',
'parent_id' => '40',
'name' => 'ELISA',
'description' => '<div class="row">
<div class="small-12 medium-12 large-12 columns">Enzyme-linked immunosorbent assay.</div>
</div>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'elisa-antibodies',
'meta_keywords' => ' ELISA Antibodies,Monoclonal antibody, Polyclonal antibody',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for ELISA applications',
'meta_title' => 'ELISA Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 12:21:41',
'created' => '2014-07-08 08:13:28',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '28',
'position' => '10',
'parent_id' => '40',
'name' => 'DB',
'description' => '<p>Dot blotting</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'dot-blotting',
'meta_keywords' => 'Dot blotting,Monoclonal & Polyclonal antibody,',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for Dot blotting applications',
'meta_title' => 'Dot blotting Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 14:40:49',
'created' => '2015-07-08 13:45:05',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '19',
'position' => '10',
'parent_id' => '40',
'name' => 'WB',
'description' => '<p><strong>Western blot</strong> : The quality of antibodies used in this technique is crucial for correct and specific protein identification. Diagenode offers huge selection of highly sensitive and specific western blot-validated antibodies.</p>
<p>Learn more about: <a href="https://www.diagenode.com/applications/western-blot">Loading control, MW marker visualization</a><em>. <br /></em></p>
<p><em></em>Check our selection of antibodies validated in Western blot.</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'western-blot-antibodies',
'meta_keywords' => ' Western Blot Antibodies ,western blot protocol,Western Blotting Products,Polyclonal antibodies ,monoclonal antibodies ',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for western blot applications',
'meta_title' => ' Western Blot - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-26 12:44:51',
'created' => '2015-01-07 09:20:00',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '29',
'position' => '10',
'parent_id' => '40',
'name' => 'IF',
'description' => '<p><strong>Immunofluorescence</strong>:</p>
<p>Diagenode offers huge selection of highly sensitive antibodies validated in IF.</p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15200229-IF.jpg" alt="" height="245" width="256" /></p>
<p><sup><strong>Immunofluorescence using the Diagenode monoclonal antibody directed against CRISPR/Cas9</strong></sup></p>
<p><sup>HeLa cells transfected with a Cas9 expression vector (left) or untransfected cells (right) were fixed in methanol at -20°C, permeabilized with acetone at -20°C and blocked with PBS containing 2% BSA. The cells were stained with the Cas9 C-terminal antibody (Cat. No. C15200229) diluted 1:400, followed by incubation with an anti-mouse secondary antibody coupled to AF488. The bottom images show counter-staining of the nuclei with Hoechst 33342.</sup></p>
<h5><sup>Check our selection of antibodies validated in IF.</sup></h5>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'immunofluorescence',
'meta_keywords' => 'Immunofluorescence,Monoclonal antibody,Polyclonal antibody',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for Immunofluorescence applications',
'meta_title' => 'Immunofluorescence - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-27 16:23:10',
'created' => '2015-07-08 13:46:02',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '42',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-seq (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-seq-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP Sequencing applications',
'meta_title' => 'ChIP Sequencing Antibodies (ChIP-Seq) | Diagenode',
'modified' => '2016-01-20 11:06:19',
'created' => '2015-10-20 11:44:45',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
[maximum depth reached]
)
)
),
'Category' => array(
(int) 0 => array(
'id' => '111',
'position' => '40',
'parent_id' => '4',
'name' => 'Histone antibodies',
'description' => '<p>Histones are the main protein components of chromatin involved in the compaction of DNA into nucleosomes, the basic units of chromatin. A <strong>nucleosome</strong> consists of one pair of each of the core histones (<strong>H2A</strong>, <strong>H2B</strong>, <strong>H3</strong> and <strong>H4</strong>) forming an octameric structure wrapped by 146 base pairs of DNA. The different nucleosomes are linked by the linker histone<strong> H1, </strong>allowing for further condensation of chromatin.</p>
<p>The core histones have a globular structure with large unstructured N-terminal tails protruding from the nucleosome. They can undergo to multiple post-translational modifications (PTM), mainly at the N-terminal tails. These <strong>post-translational modifications </strong>include methylation, acetylation, phosphorylation, ubiquitinylation, citrullination, sumoylation, deamination and crotonylation. The most well characterized PTMs are <strong>methylation,</strong> <strong>acetylation and phosphorylation</strong>. Histone methylation occurs mainly on lysine (K) residues, which can be mono-, di- or tri-methylated, and on arginines (R), which can be mono-methylated and symmetrically or asymmetrically di-methylated. Histone acetylation occurs on lysines and histone phosphorylation mainly on serines (S), threonines (T) and tyrosines (Y).</p>
<p>The PTMs of the different residues are involved in numerous processes such as DNA repair, DNA replication and chromosome condensation. They influence the chromatin organization and can be positively or negatively associated with gene expression. Trimethylation of H3K4, H3K36 and H3K79, and lysine acetylation generally result in an open chromatin configuration (figure below) and are therefore associated with <strong>euchromatin</strong> and gene activation. Trimethylation of H3K9, K3K27 and H4K20, on the other hand, is enriched in <strong>heterochromatin </strong>and associated with gene silencing. The combination of different histone modifications is called the "<strong>histone code</strong>”, analogous to the genetic code.</p>
<p><img src="https://www.diagenode.com/img/categories/antibodies/histone-marks-illustration.png" /></p>
<p>Diagenode is proud to offer a large range of antibodies against histones and histone modifications. Our antibodies are highly specific and have been validated in many applications, including <strong>ChIP</strong> and <strong>ChIP-seq</strong>.</p>
<p>Diagenode’s collection includes antibodies recognizing:</p>
<ul>
<li><strong>Histone H1 variants</strong></li>
<li><strong>Histone H2A, H2A variants and histone H2A</strong> <strong>modifications</strong> (serine phosphorylation, lysine acetylation, lysine ubiquitinylation)</li>
<li><strong>Histone H2B and H2B</strong> <strong>modifications </strong>(serine phosphorylation, lysine acetylation)</li>
<li><strong>Histone H3 and H3 modifications </strong>(lysine methylation (mono-, di- and tri-methylated), lysine acetylation, serine phosphorylation, threonine phosphorylation, arginine methylation (mono-methylated, symmetrically and asymmetrically di-methylated))</li>
<li><strong>Histone H4 and H4 modifications (</strong>lysine methylation (mono-, di- and tri-methylated), lysine acetylation, arginine methylation (mono-methylated and symmetrically di-methylated), serine phosphorylation )</li>
</ul>
<p><span style="font-weight: 400;"><strong>HDAC's HAT's, HMT's and other</strong> <strong>enzymes</strong> which modify histones can be found in the category <a href="../categories/chromatin-modifying-proteins-histone-transferase">Histone modifying enzymes</a><br /></span></p>
<p><span style="font-weight: 400;"> Diagenode’s highly validated antibodies:</span></p>
<ul>
<li><span style="font-weight: 400;"> Highly sensitive and specific</span></li>
<li><span style="font-weight: 400;"> Cost-effective (requires less antibody per reaction)</span></li>
<li><span style="font-weight: 400;"> Batch-specific data is available on the website</span></li>
<li><span style="font-weight: 400;"> Expert technical support</span></li>
<li><span style="font-weight: 400;"> Sample sizes available</span></li>
<li><span style="font-weight: 400;"> 100% satisfaction guarantee</span></li>
</ul>',
'no_promo' => false,
'in_menu' => false,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'histone-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Histone, antibody, histone h1, histone h2, histone h3, histone h4',
'meta_description' => 'Polyclonal and Monoclonal Antibodies against Histones and their modifications validated for many applications, including Chromatin Immunoprecipitation (ChIP) and ChIP-Sequencing (ChIP-seq)',
'meta_title' => 'Histone and Modified Histone Antibodies | Diagenode',
'modified' => '2020-09-17 13:34:56',
'created' => '2016-04-01 16:01:32',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 1 => array(
'id' => '17',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-seq grade antibodies',
'description' => '<p><b>Unparalleled ChIP-Seq results with the most rigorously validated antibodies</b></p>
<p><span style="font-weight: 400;">Diagenode provides leading solutions for epigenetic research. Because ChIP-seq is a widely-used technique, we validate our antibodies in ChIP and ChIP-seq experiments (in addition to conventional methods like Western blot, Dot blot, ELISA, and immunofluorescence) to provide the highest quality antibody. We standardize our validation and production to guarantee high product quality without technical bias. Diagenode guarantees ChIP-seq grade antibody performance under our suggested conditions.</span></p>
<div class="row">
<div class="small-12 medium-9 large-9 columns">
<p><strong>ChIP-seq profile</strong> of active (H3K4me3 and H3K36me3) and inactive (H3K27me3) marks using Diagenode antibodies.</p>
<img src="https://www.diagenode.com/img/categories/antibodies/chip-seq-grade-antibodies.png" /></div>
<div class="small-12 medium-3 large-3 columns">
<p><small> ChIP was performed on sheared chromatin from 100,000 K562 cells using iDeal ChIP-seq kit for Histones (cat. No. C01010051) with 1 µg of the Diagenode antibodies against H3K27me3 (cat. No. C15410195) and H3K4me3 (cat. No. C15410003), and 0.5 µg of the antibody against H3K36me3 (cat. No. C15410192). The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. The figure shows the signal distribution along the complete sequence of human chromosome 3, a zoomin to a 10 Mb region and a further zoomin to a 1.5 Mb region. </small></p>
</div>
</div>
<p>Diagenode’s highly validated antibodies:</p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-seq-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-seq grade antibodies,polyclonal antibody,WB, ELISA, ChIP-seq (ab), ChIP-qPCR (ab)',
'meta_description' => 'Diagenode Offers Wide Range of Validated ChIP-Seq Grade Antibodies for Unparalleled ChIP-Seq Results',
'meta_title' => 'Chromatin Immunoprecipitation ChIP-Seq Grade Antibodies | Diagenode',
'modified' => '2019-07-03 10:57:22',
'created' => '2015-02-16 02:24:01',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 2 => array(
'id' => '103',
'position' => '0',
'parent_id' => '4',
'name' => 'All antibodies',
'description' => '<p><span style="font-weight: 400;">All Diagenode’s antibodies are listed below. Please, use our Quick search field to find the antibody of interest by target name, application, purity.</span></p>
<p><span style="font-weight: 400;">Diagenode’s highly validated antibodies:</span></p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'all-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Antibodies,Premium Antibodies,Classic,Pioneer',
'meta_description' => 'Diagenode Offers Strict quality standards with Rigorous QC and validated Antibodies. Classified based on level of validation for flexibility of Application. Comprehensive selection of histone and non-histone Antibodies',
'meta_title' => 'Diagenode's selection of Antibodies is exclusively dedicated for Epigenetic Research | Diagenode',
'modified' => '2019-07-03 10:55:44',
'created' => '2015-11-02 14:49:22',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 3 => array(
'id' => '127',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-grade antibodies',
'description' => '<div class="row">
<div class="small-12 columns"><center></center>
<p><br />Chromatin immunoprecipitation (<b>ChIP</b>) is a technique to study the associations of proteins with the specific genomic regions in intact cells. One of the most important steps of this protocol is the immunoprecipitation of targeted protein using the antibody specifically recognizing it. The quality of antibodies used in ChIP is essential for the success of the experiment. Diagenode offers extensively validated ChIP-grade antibodies, confirmed for their specificity, and high level of performance in ChIP. Each batch is validated, and batch-specific data are available on the website.</p>
<p></p>
</div>
</div>
<p><strong>ChIP results</strong> obtained with the antibody directed against H3K4me3 (Cat. No. <a href="../p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul">C15410003</a>). </p>
<div class="row">
<div class="small-12 medium-6 large-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" alt="" width="400" height="315" /> </div>
<div class="small-12 medium-6 large-6 columns">
<p></p>
<p></p>
<p></p>
</div>
</div>
<p></p>
<p>Our aim at Diagenode is to offer the largest collection of highly specific <strong>ChIP-grade antibodies</strong>. We add new antibodies monthly. Find your ChIP-grade antibody in the list below and check more information about tested applications, extensive validation data, and product information.</p>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-grade antibodies, polyclonal antibody, monoclonal antibody, Diagenode',
'meta_description' => 'Diagenode Offers Extensively Validated ChIP-Grade Antibodies, Confirmed for their Specificity, and high level of Performance in Chromatin Immunoprecipitation ChIP',
'meta_title' => 'Chromatin immunoprecipitation ChIP-grade antibodies | Diagenode',
'modified' => '2024-11-19 17:27:07',
'created' => '2017-02-14 11:16:04',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
)
),
'Document' => array(
(int) 0 => array(
'id' => '455',
'name' => 'Datasheet H2AZac C15410202',
'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone H2A.Z containing the acetylated lysines 4, 7 and 11, using a KLH-conjugated synthetic peptide.</p>',
'image_id' => null,
'type' => 'Datasheet',
'url' => 'files/products/antibodies/Datasheet_H2AZac_C15410202.pdf',
'slug' => 'datasheet-h2azac-c15410202',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2017-01-23 11:28:00',
'created' => '2015-07-07 11:47:44',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '11',
'name' => 'Antibodies you can trust',
'description' => '<p style="text-align: justify;"><span>Epigenetic research tools have evolved over time from endpoint PCR to qPCR to the analyses of large sets of genome-wide sequencing data. ChIP sequencing (ChIP-seq) has now become the gold standard method for chromatin studies, given the accuracy and coverage scale of the approach over other methods. Successful ChIP-seq, however, requires a higher level of experimental accuracy and consistency in all steps of ChIP than ever before. Particularly crucial is the quality of ChIP antibodies. </span></p>',
'image_id' => null,
'type' => 'Poster',
'url' => 'files/posters/Antibodies_you_can_trust_Poster.pdf',
'slug' => 'antibodies-you-can-trust-poster',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2015-10-01 20:18:31',
'created' => '2015-07-03 16:05:15',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
[maximum depth reached]
)
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
'id' => '1783',
'name' => 'product/antibodies/chipseq-grade-ab-icon.png',
'alt' => 'ChIP-seq Grade',
'modified' => '2020-11-27 07:04:40',
'created' => '2018-03-15 15:54:09',
'ProductsImage' => array(
[maximum depth reached]
)
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
'id' => '3751',
'name' => 'Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy.',
'authors' => 'Fröb F, Sock E, Tamm ER, Saur AL, Hillgärtner S, Williams TJ, Fujii T, Fukunaga R, Wegner M',
'description' => '<p>Schwann cells ensure efficient nerve impulse conduction in the peripheral nervous system. Their development is accompanied by defined chromatin changes, including variant histone deposition and redistribution. To study the importance of variant histones for Schwann cell development, we altered their genomic distribution by conditionally deleting Ep400, the central subunit of the Tip60/Ep400 complex. Ep400 absence causes peripheral neuropathy in mice, characterized by terminal differentiation defects in myelinating and non-myelinating Schwann cells and immune cell activation. Variant histone H2A.Z is differently distributed throughout the genome and remains at promoters of Tfap2a, Pax3 and other transcriptional regulator genes with transient function at earlier developmental stages. Tfap2a deletion in Ep400-deficient Schwann cells causes a partial rescue arguing that continued expression of early regulators mediates the phenotypic defects. Our results show that proper genomic distribution of variant histones is essential for Schwann cell differentiation, and assign importance to Ep400-containing chromatin remodelers in the process.</p>',
'date' => '2019-05-29',
'pmid' => 'http://www.pubmed.gov/31142747',
'doi' => '10.1038/s41467-019-10287-w',
'modified' => '2019-10-03 12:24:20',
'created' => '2019-10-02 16:16:55',
'ProductsPublication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
[maximum depth reached]
)
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
'id' => '3835',
'name' => 'SDS C15410202 H2A Zac Antibody US en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-US-en-GHS_2_0-1.pdf',
'countries' => 'US',
'modified' => '2024-01-17 20:03:27',
'created' => '2024-01-17 20:03:27',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3837',
'name' => 'SDS C15410202 H2A Zac Antibody GB en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-GB-en-GHS_2_0-1.pdf',
'countries' => 'GB',
'modified' => '2024-01-17 20:04:00',
'created' => '2024-01-17 20:04:00',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '3836',
'name' => 'SDS C15410202 H2A Zac Antibody JP ja',
'language' => 'ja',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-JP-ja-GHS_3_0-1.pdf',
'countries' => 'JP',
'modified' => '2024-01-17 20:03:44',
'created' => '2024-01-17 20:03:44',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '3840',
'name' => 'SDS C15410202 H2A Zac Antibody DE de',
'language' => 'de',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-DE-de-GHS_2_0-1.pdf',
'countries' => 'DE',
'modified' => '2024-01-17 20:04:52',
'created' => '2024-01-17 20:04:52',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '3839',
'name' => 'SDS C15410202 H2A Zac Antibody ES es',
'language' => 'es',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-ES-es-GHS_2_0-1.pdf',
'countries' => 'ES',
'modified' => '2024-01-17 20:04:35',
'created' => '2024-01-17 20:04:35',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '3834',
'name' => 'SDS C15410202 H2A Zac Antibody BE fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-fr-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:03:08',
'created' => '2024-01-17 20:03:08',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 6 => array(
'id' => '3838',
'name' => 'SDS C15410202 H2A Zac Antibody FR fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-FR-fr-GHS_2_0-1.pdf',
'countries' => 'FR',
'modified' => '2024-01-17 20:04:17',
'created' => '2024-01-17 20:04:17',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 7 => array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
)
)
)
$meta_canonical = 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
$country = 'US'
$countries_allowed = array(
(int) 0 => 'CA',
(int) 1 => 'US',
(int) 2 => 'IE',
(int) 3 => 'GB',
(int) 4 => 'DK',
(int) 5 => 'NO',
(int) 6 => 'SE',
(int) 7 => 'FI',
(int) 8 => 'NL',
(int) 9 => 'BE',
(int) 10 => 'LU',
(int) 11 => 'FR',
(int) 12 => 'DE',
(int) 13 => 'CH',
(int) 14 => 'AT',
(int) 15 => 'ES',
(int) 16 => 'IT',
(int) 17 => 'PT'
)
$outsource = false
$other_formats = array(
(int) 0 => array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
)
$pro = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$edit = ''
$testimonials = ''
$featured_testimonials = ''
$related_products = ''
$rrbs_service = array(
(int) 0 => (int) 1894,
(int) 1 => (int) 1895
)
$chipseq_service = array(
(int) 0 => (int) 2683,
(int) 1 => (int) 1835,
(int) 2 => (int) 1836,
(int) 3 => (int) 2684,
(int) 4 => (int) 1838,
(int) 5 => (int) 1839,
(int) 6 => (int) 1856
)
$labelize = object(Closure) {
}
$old_catalog_number = ''
$country_code = 'US'
$other_format = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$img = 'banners/banner-cut_tag-chipmentation-500.jpg'
$label = '<img src="/img/banners/banner-customizer-back.png" alt=""/>'
$application = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
'id' => '4023',
'product_id' => '2276',
'application_id' => '43'
)
)
$slugs = array(
(int) 0 => 'chip-qpcr-antibodies'
)
$applications = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'locale' => 'eng'
)
$description = ''
$name = 'ChIP-qPCR (ab)'
$document = array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
'id' => '1309',
'product_id' => '2276',
'document_id' => '38'
)
)
$sds = array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
'id' => '6293',
'product_id' => '2276',
'safety_sheet_id' => '3841'
)
)
$publication = array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
'id' => '3360',
'product_id' => '2276',
'publication_id' => '3556'
)
)
$externalLink = ' <a href="http://www.pubmed.gov/30327463" target="_blank"><i class="fa fa-external-link"></i></a>'
include - APP/View/Products/view.ctp, line 755
View::_evaluate() - CORE/Cake/View/View.php, line 971
View::_render() - CORE/Cake/View/View.php, line 933
View::render() - CORE/Cake/View/View.php, line 473
Controller::render() - CORE/Cake/Controller/Controller.php, line 963
ProductsController::slug() - APP/Controller/ProductsController.php, line 1052
ReflectionMethod::invokeArgs() - [internal], line ??
Controller::invokeAction() - CORE/Cake/Controller/Controller.php, line 491
Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 193
Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167
[main] - APP/webroot/index.php, line 118
Notice (8): Undefined variable: header [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp'
$dataForView = array(
'language' => 'en',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'product' => array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Group' => array(
'Group' => array(
[maximum depth reached]
),
'Master' => array(
[maximum depth reached]
),
'Product' => array(
[maximum depth reached]
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
)
),
'Category' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
)
),
'Document' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
),
(int) 6 => array(
[maximum depth reached]
),
(int) 7 => array(
[maximum depth reached]
)
)
),
'meta_canonical' => 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
)
$language = 'en'
$meta_keywords = ''
$meta_description = 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.'
$meta_title = 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode'
$product = array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
)
),
'Group' => array(
'Group' => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
),
'Master' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20'
),
'Product' => array(
(int) 0 => array(
[maximum depth reached]
)
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
'id' => '20',
'position' => '10',
'parent_id' => '40',
'name' => 'ELISA',
'description' => '<div class="row">
<div class="small-12 medium-12 large-12 columns">Enzyme-linked immunosorbent assay.</div>
</div>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'elisa-antibodies',
'meta_keywords' => ' ELISA Antibodies,Monoclonal antibody, Polyclonal antibody',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for ELISA applications',
'meta_title' => 'ELISA Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 12:21:41',
'created' => '2014-07-08 08:13:28',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '28',
'position' => '10',
'parent_id' => '40',
'name' => 'DB',
'description' => '<p>Dot blotting</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'dot-blotting',
'meta_keywords' => 'Dot blotting,Monoclonal & Polyclonal antibody,',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for Dot blotting applications',
'meta_title' => 'Dot blotting Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 14:40:49',
'created' => '2015-07-08 13:45:05',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '19',
'position' => '10',
'parent_id' => '40',
'name' => 'WB',
'description' => '<p><strong>Western blot</strong> : The quality of antibodies used in this technique is crucial for correct and specific protein identification. Diagenode offers huge selection of highly sensitive and specific western blot-validated antibodies.</p>
<p>Learn more about: <a href="https://www.diagenode.com/applications/western-blot">Loading control, MW marker visualization</a><em>. <br /></em></p>
<p><em></em>Check our selection of antibodies validated in Western blot.</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'western-blot-antibodies',
'meta_keywords' => ' Western Blot Antibodies ,western blot protocol,Western Blotting Products,Polyclonal antibodies ,monoclonal antibodies ',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for western blot applications',
'meta_title' => ' Western Blot - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-26 12:44:51',
'created' => '2015-01-07 09:20:00',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '29',
'position' => '10',
'parent_id' => '40',
'name' => 'IF',
'description' => '<p><strong>Immunofluorescence</strong>:</p>
<p>Diagenode offers huge selection of highly sensitive antibodies validated in IF.</p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15200229-IF.jpg" alt="" height="245" width="256" /></p>
<p><sup><strong>Immunofluorescence using the Diagenode monoclonal antibody directed against CRISPR/Cas9</strong></sup></p>
<p><sup>HeLa cells transfected with a Cas9 expression vector (left) or untransfected cells (right) were fixed in methanol at -20°C, permeabilized with acetone at -20°C and blocked with PBS containing 2% BSA. The cells were stained with the Cas9 C-terminal antibody (Cat. No. C15200229) diluted 1:400, followed by incubation with an anti-mouse secondary antibody coupled to AF488. The bottom images show counter-staining of the nuclei with Hoechst 33342.</sup></p>
<h5><sup>Check our selection of antibodies validated in IF.</sup></h5>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'immunofluorescence',
'meta_keywords' => 'Immunofluorescence,Monoclonal antibody,Polyclonal antibody',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for Immunofluorescence applications',
'meta_title' => 'Immunofluorescence - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-27 16:23:10',
'created' => '2015-07-08 13:46:02',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '42',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-seq (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-seq-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP Sequencing applications',
'meta_title' => 'ChIP Sequencing Antibodies (ChIP-Seq) | Diagenode',
'modified' => '2016-01-20 11:06:19',
'created' => '2015-10-20 11:44:45',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
[maximum depth reached]
)
)
),
'Category' => array(
(int) 0 => array(
'id' => '111',
'position' => '40',
'parent_id' => '4',
'name' => 'Histone antibodies',
'description' => '<p>Histones are the main protein components of chromatin involved in the compaction of DNA into nucleosomes, the basic units of chromatin. A <strong>nucleosome</strong> consists of one pair of each of the core histones (<strong>H2A</strong>, <strong>H2B</strong>, <strong>H3</strong> and <strong>H4</strong>) forming an octameric structure wrapped by 146 base pairs of DNA. The different nucleosomes are linked by the linker histone<strong> H1, </strong>allowing for further condensation of chromatin.</p>
<p>The core histones have a globular structure with large unstructured N-terminal tails protruding from the nucleosome. They can undergo to multiple post-translational modifications (PTM), mainly at the N-terminal tails. These <strong>post-translational modifications </strong>include methylation, acetylation, phosphorylation, ubiquitinylation, citrullination, sumoylation, deamination and crotonylation. The most well characterized PTMs are <strong>methylation,</strong> <strong>acetylation and phosphorylation</strong>. Histone methylation occurs mainly on lysine (K) residues, which can be mono-, di- or tri-methylated, and on arginines (R), which can be mono-methylated and symmetrically or asymmetrically di-methylated. Histone acetylation occurs on lysines and histone phosphorylation mainly on serines (S), threonines (T) and tyrosines (Y).</p>
<p>The PTMs of the different residues are involved in numerous processes such as DNA repair, DNA replication and chromosome condensation. They influence the chromatin organization and can be positively or negatively associated with gene expression. Trimethylation of H3K4, H3K36 and H3K79, and lysine acetylation generally result in an open chromatin configuration (figure below) and are therefore associated with <strong>euchromatin</strong> and gene activation. Trimethylation of H3K9, K3K27 and H4K20, on the other hand, is enriched in <strong>heterochromatin </strong>and associated with gene silencing. The combination of different histone modifications is called the "<strong>histone code</strong>”, analogous to the genetic code.</p>
<p><img src="https://www.diagenode.com/img/categories/antibodies/histone-marks-illustration.png" /></p>
<p>Diagenode is proud to offer a large range of antibodies against histones and histone modifications. Our antibodies are highly specific and have been validated in many applications, including <strong>ChIP</strong> and <strong>ChIP-seq</strong>.</p>
<p>Diagenode’s collection includes antibodies recognizing:</p>
<ul>
<li><strong>Histone H1 variants</strong></li>
<li><strong>Histone H2A, H2A variants and histone H2A</strong> <strong>modifications</strong> (serine phosphorylation, lysine acetylation, lysine ubiquitinylation)</li>
<li><strong>Histone H2B and H2B</strong> <strong>modifications </strong>(serine phosphorylation, lysine acetylation)</li>
<li><strong>Histone H3 and H3 modifications </strong>(lysine methylation (mono-, di- and tri-methylated), lysine acetylation, serine phosphorylation, threonine phosphorylation, arginine methylation (mono-methylated, symmetrically and asymmetrically di-methylated))</li>
<li><strong>Histone H4 and H4 modifications (</strong>lysine methylation (mono-, di- and tri-methylated), lysine acetylation, arginine methylation (mono-methylated and symmetrically di-methylated), serine phosphorylation )</li>
</ul>
<p><span style="font-weight: 400;"><strong>HDAC's HAT's, HMT's and other</strong> <strong>enzymes</strong> which modify histones can be found in the category <a href="../categories/chromatin-modifying-proteins-histone-transferase">Histone modifying enzymes</a><br /></span></p>
<p><span style="font-weight: 400;"> Diagenode’s highly validated antibodies:</span></p>
<ul>
<li><span style="font-weight: 400;"> Highly sensitive and specific</span></li>
<li><span style="font-weight: 400;"> Cost-effective (requires less antibody per reaction)</span></li>
<li><span style="font-weight: 400;"> Batch-specific data is available on the website</span></li>
<li><span style="font-weight: 400;"> Expert technical support</span></li>
<li><span style="font-weight: 400;"> Sample sizes available</span></li>
<li><span style="font-weight: 400;"> 100% satisfaction guarantee</span></li>
</ul>',
'no_promo' => false,
'in_menu' => false,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'histone-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Histone, antibody, histone h1, histone h2, histone h3, histone h4',
'meta_description' => 'Polyclonal and Monoclonal Antibodies against Histones and their modifications validated for many applications, including Chromatin Immunoprecipitation (ChIP) and ChIP-Sequencing (ChIP-seq)',
'meta_title' => 'Histone and Modified Histone Antibodies | Diagenode',
'modified' => '2020-09-17 13:34:56',
'created' => '2016-04-01 16:01:32',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 1 => array(
'id' => '17',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-seq grade antibodies',
'description' => '<p><b>Unparalleled ChIP-Seq results with the most rigorously validated antibodies</b></p>
<p><span style="font-weight: 400;">Diagenode provides leading solutions for epigenetic research. Because ChIP-seq is a widely-used technique, we validate our antibodies in ChIP and ChIP-seq experiments (in addition to conventional methods like Western blot, Dot blot, ELISA, and immunofluorescence) to provide the highest quality antibody. We standardize our validation and production to guarantee high product quality without technical bias. Diagenode guarantees ChIP-seq grade antibody performance under our suggested conditions.</span></p>
<div class="row">
<div class="small-12 medium-9 large-9 columns">
<p><strong>ChIP-seq profile</strong> of active (H3K4me3 and H3K36me3) and inactive (H3K27me3) marks using Diagenode antibodies.</p>
<img src="https://www.diagenode.com/img/categories/antibodies/chip-seq-grade-antibodies.png" /></div>
<div class="small-12 medium-3 large-3 columns">
<p><small> ChIP was performed on sheared chromatin from 100,000 K562 cells using iDeal ChIP-seq kit for Histones (cat. No. C01010051) with 1 µg of the Diagenode antibodies against H3K27me3 (cat. No. C15410195) and H3K4me3 (cat. No. C15410003), and 0.5 µg of the antibody against H3K36me3 (cat. No. C15410192). The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. The figure shows the signal distribution along the complete sequence of human chromosome 3, a zoomin to a 10 Mb region and a further zoomin to a 1.5 Mb region. </small></p>
</div>
</div>
<p>Diagenode’s highly validated antibodies:</p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-seq-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-seq grade antibodies,polyclonal antibody,WB, ELISA, ChIP-seq (ab), ChIP-qPCR (ab)',
'meta_description' => 'Diagenode Offers Wide Range of Validated ChIP-Seq Grade Antibodies for Unparalleled ChIP-Seq Results',
'meta_title' => 'Chromatin Immunoprecipitation ChIP-Seq Grade Antibodies | Diagenode',
'modified' => '2019-07-03 10:57:22',
'created' => '2015-02-16 02:24:01',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 2 => array(
'id' => '103',
'position' => '0',
'parent_id' => '4',
'name' => 'All antibodies',
'description' => '<p><span style="font-weight: 400;">All Diagenode’s antibodies are listed below. Please, use our Quick search field to find the antibody of interest by target name, application, purity.</span></p>
<p><span style="font-weight: 400;">Diagenode’s highly validated antibodies:</span></p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'all-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Antibodies,Premium Antibodies,Classic,Pioneer',
'meta_description' => 'Diagenode Offers Strict quality standards with Rigorous QC and validated Antibodies. Classified based on level of validation for flexibility of Application. Comprehensive selection of histone and non-histone Antibodies',
'meta_title' => 'Diagenode's selection of Antibodies is exclusively dedicated for Epigenetic Research | Diagenode',
'modified' => '2019-07-03 10:55:44',
'created' => '2015-11-02 14:49:22',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 3 => array(
'id' => '127',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-grade antibodies',
'description' => '<div class="row">
<div class="small-12 columns"><center></center>
<p><br />Chromatin immunoprecipitation (<b>ChIP</b>) is a technique to study the associations of proteins with the specific genomic regions in intact cells. One of the most important steps of this protocol is the immunoprecipitation of targeted protein using the antibody specifically recognizing it. The quality of antibodies used in ChIP is essential for the success of the experiment. Diagenode offers extensively validated ChIP-grade antibodies, confirmed for their specificity, and high level of performance in ChIP. Each batch is validated, and batch-specific data are available on the website.</p>
<p></p>
</div>
</div>
<p><strong>ChIP results</strong> obtained with the antibody directed against H3K4me3 (Cat. No. <a href="../p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul">C15410003</a>). </p>
<div class="row">
<div class="small-12 medium-6 large-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" alt="" width="400" height="315" /> </div>
<div class="small-12 medium-6 large-6 columns">
<p></p>
<p></p>
<p></p>
</div>
</div>
<p></p>
<p>Our aim at Diagenode is to offer the largest collection of highly specific <strong>ChIP-grade antibodies</strong>. We add new antibodies monthly. Find your ChIP-grade antibody in the list below and check more information about tested applications, extensive validation data, and product information.</p>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-grade antibodies, polyclonal antibody, monoclonal antibody, Diagenode',
'meta_description' => 'Diagenode Offers Extensively Validated ChIP-Grade Antibodies, Confirmed for their Specificity, and high level of Performance in Chromatin Immunoprecipitation ChIP',
'meta_title' => 'Chromatin immunoprecipitation ChIP-grade antibodies | Diagenode',
'modified' => '2024-11-19 17:27:07',
'created' => '2017-02-14 11:16:04',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
)
),
'Document' => array(
(int) 0 => array(
'id' => '455',
'name' => 'Datasheet H2AZac C15410202',
'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone H2A.Z containing the acetylated lysines 4, 7 and 11, using a KLH-conjugated synthetic peptide.</p>',
'image_id' => null,
'type' => 'Datasheet',
'url' => 'files/products/antibodies/Datasheet_H2AZac_C15410202.pdf',
'slug' => 'datasheet-h2azac-c15410202',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2017-01-23 11:28:00',
'created' => '2015-07-07 11:47:44',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '11',
'name' => 'Antibodies you can trust',
'description' => '<p style="text-align: justify;"><span>Epigenetic research tools have evolved over time from endpoint PCR to qPCR to the analyses of large sets of genome-wide sequencing data. ChIP sequencing (ChIP-seq) has now become the gold standard method for chromatin studies, given the accuracy and coverage scale of the approach over other methods. Successful ChIP-seq, however, requires a higher level of experimental accuracy and consistency in all steps of ChIP than ever before. Particularly crucial is the quality of ChIP antibodies. </span></p>',
'image_id' => null,
'type' => 'Poster',
'url' => 'files/posters/Antibodies_you_can_trust_Poster.pdf',
'slug' => 'antibodies-you-can-trust-poster',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2015-10-01 20:18:31',
'created' => '2015-07-03 16:05:15',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
[maximum depth reached]
)
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
'id' => '1783',
'name' => 'product/antibodies/chipseq-grade-ab-icon.png',
'alt' => 'ChIP-seq Grade',
'modified' => '2020-11-27 07:04:40',
'created' => '2018-03-15 15:54:09',
'ProductsImage' => array(
[maximum depth reached]
)
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
'id' => '3751',
'name' => 'Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy.',
'authors' => 'Fröb F, Sock E, Tamm ER, Saur AL, Hillgärtner S, Williams TJ, Fujii T, Fukunaga R, Wegner M',
'description' => '<p>Schwann cells ensure efficient nerve impulse conduction in the peripheral nervous system. Their development is accompanied by defined chromatin changes, including variant histone deposition and redistribution. To study the importance of variant histones for Schwann cell development, we altered their genomic distribution by conditionally deleting Ep400, the central subunit of the Tip60/Ep400 complex. Ep400 absence causes peripheral neuropathy in mice, characterized by terminal differentiation defects in myelinating and non-myelinating Schwann cells and immune cell activation. Variant histone H2A.Z is differently distributed throughout the genome and remains at promoters of Tfap2a, Pax3 and other transcriptional regulator genes with transient function at earlier developmental stages. Tfap2a deletion in Ep400-deficient Schwann cells causes a partial rescue arguing that continued expression of early regulators mediates the phenotypic defects. Our results show that proper genomic distribution of variant histones is essential for Schwann cell differentiation, and assign importance to Ep400-containing chromatin remodelers in the process.</p>',
'date' => '2019-05-29',
'pmid' => 'http://www.pubmed.gov/31142747',
'doi' => '10.1038/s41467-019-10287-w',
'modified' => '2019-10-03 12:24:20',
'created' => '2019-10-02 16:16:55',
'ProductsPublication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
[maximum depth reached]
)
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
'id' => '3835',
'name' => 'SDS C15410202 H2A Zac Antibody US en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-US-en-GHS_2_0-1.pdf',
'countries' => 'US',
'modified' => '2024-01-17 20:03:27',
'created' => '2024-01-17 20:03:27',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3837',
'name' => 'SDS C15410202 H2A Zac Antibody GB en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-GB-en-GHS_2_0-1.pdf',
'countries' => 'GB',
'modified' => '2024-01-17 20:04:00',
'created' => '2024-01-17 20:04:00',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '3836',
'name' => 'SDS C15410202 H2A Zac Antibody JP ja',
'language' => 'ja',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-JP-ja-GHS_3_0-1.pdf',
'countries' => 'JP',
'modified' => '2024-01-17 20:03:44',
'created' => '2024-01-17 20:03:44',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '3840',
'name' => 'SDS C15410202 H2A Zac Antibody DE de',
'language' => 'de',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-DE-de-GHS_2_0-1.pdf',
'countries' => 'DE',
'modified' => '2024-01-17 20:04:52',
'created' => '2024-01-17 20:04:52',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '3839',
'name' => 'SDS C15410202 H2A Zac Antibody ES es',
'language' => 'es',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-ES-es-GHS_2_0-1.pdf',
'countries' => 'ES',
'modified' => '2024-01-17 20:04:35',
'created' => '2024-01-17 20:04:35',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '3834',
'name' => 'SDS C15410202 H2A Zac Antibody BE fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-fr-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:03:08',
'created' => '2024-01-17 20:03:08',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 6 => array(
'id' => '3838',
'name' => 'SDS C15410202 H2A Zac Antibody FR fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-FR-fr-GHS_2_0-1.pdf',
'countries' => 'FR',
'modified' => '2024-01-17 20:04:17',
'created' => '2024-01-17 20:04:17',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 7 => array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
)
)
)
$meta_canonical = 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
$country = 'US'
$countries_allowed = array(
(int) 0 => 'CA',
(int) 1 => 'US',
(int) 2 => 'IE',
(int) 3 => 'GB',
(int) 4 => 'DK',
(int) 5 => 'NO',
(int) 6 => 'SE',
(int) 7 => 'FI',
(int) 8 => 'NL',
(int) 9 => 'BE',
(int) 10 => 'LU',
(int) 11 => 'FR',
(int) 12 => 'DE',
(int) 13 => 'CH',
(int) 14 => 'AT',
(int) 15 => 'ES',
(int) 16 => 'IT',
(int) 17 => 'PT'
)
$outsource = false
$other_formats = array(
(int) 0 => array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
)
$pro = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$edit = ''
$testimonials = ''
$featured_testimonials = ''
$related_products = ''
$rrbs_service = array(
(int) 0 => (int) 1894,
(int) 1 => (int) 1895
)
$chipseq_service = array(
(int) 0 => (int) 2683,
(int) 1 => (int) 1835,
(int) 2 => (int) 1836,
(int) 3 => (int) 2684,
(int) 4 => (int) 1838,
(int) 5 => (int) 1839,
(int) 6 => (int) 1856
)
$labelize = object(Closure) {
}
$old_catalog_number = ''
$country_code = 'US'
$other_format = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$img = 'banners/banner-cut_tag-chipmentation-500.jpg'
$label = '<img src="/img/banners/banner-customizer-back.png" alt=""/>'
$application = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
'id' => '4023',
'product_id' => '2276',
'application_id' => '43'
)
)
$slugs = array(
(int) 0 => 'chip-qpcr-antibodies'
)
$applications = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'locale' => 'eng'
)
$description = ''
$name = 'ChIP-qPCR (ab)'
$document = array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
'id' => '1309',
'product_id' => '2276',
'document_id' => '38'
)
)
$sds = array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
'id' => '6293',
'product_id' => '2276',
'safety_sheet_id' => '3841'
)
)
$publication = array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
'id' => '3360',
'product_id' => '2276',
'publication_id' => '3556'
)
)
$externalLink = ' <a href="http://www.pubmed.gov/30327463" target="_blank"><i class="fa fa-external-link"></i></a>'
include - APP/View/Products/view.ctp, line 755
View::_evaluate() - CORE/Cake/View/View.php, line 971
View::_render() - CORE/Cake/View/View.php, line 933
View::render() - CORE/Cake/View/View.php, line 473
Controller::render() - CORE/Cake/Controller/Controller.php, line 963
ProductsController::slug() - APP/Controller/ProductsController.php, line 1052
ReflectionMethod::invokeArgs() - [internal], line ??
Controller::invokeAction() - CORE/Cake/Controller/Controller.php, line 491
Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 193
Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167
[main] - APP/webroot/index.php, line 118
Notice (8): Undefined variable: message [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp'
$dataForView = array(
'language' => 'en',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'product' => array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Group' => array(
'Group' => array(
[maximum depth reached]
),
'Master' => array(
[maximum depth reached]
),
'Product' => array(
[maximum depth reached]
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
)
),
'Category' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
)
),
'Document' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
),
(int) 6 => array(
[maximum depth reached]
),
(int) 7 => array(
[maximum depth reached]
)
)
),
'meta_canonical' => 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
)
$language = 'en'
$meta_keywords = ''
$meta_description = 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.'
$meta_title = 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode'
$product = array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
)
),
'Group' => array(
'Group' => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
),
'Master' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20'
),
'Product' => array(
(int) 0 => array(
[maximum depth reached]
)
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
'id' => '20',
'position' => '10',
'parent_id' => '40',
'name' => 'ELISA',
'description' => '<div class="row">
<div class="small-12 medium-12 large-12 columns">Enzyme-linked immunosorbent assay.</div>
</div>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'elisa-antibodies',
'meta_keywords' => ' ELISA Antibodies,Monoclonal antibody, Polyclonal antibody',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for ELISA applications',
'meta_title' => 'ELISA Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 12:21:41',
'created' => '2014-07-08 08:13:28',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '28',
'position' => '10',
'parent_id' => '40',
'name' => 'DB',
'description' => '<p>Dot blotting</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'dot-blotting',
'meta_keywords' => 'Dot blotting,Monoclonal & Polyclonal antibody,',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for Dot blotting applications',
'meta_title' => 'Dot blotting Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 14:40:49',
'created' => '2015-07-08 13:45:05',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '19',
'position' => '10',
'parent_id' => '40',
'name' => 'WB',
'description' => '<p><strong>Western blot</strong> : The quality of antibodies used in this technique is crucial for correct and specific protein identification. Diagenode offers huge selection of highly sensitive and specific western blot-validated antibodies.</p>
<p>Learn more about: <a href="https://www.diagenode.com/applications/western-blot">Loading control, MW marker visualization</a><em>. <br /></em></p>
<p><em></em>Check our selection of antibodies validated in Western blot.</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'western-blot-antibodies',
'meta_keywords' => ' Western Blot Antibodies ,western blot protocol,Western Blotting Products,Polyclonal antibodies ,monoclonal antibodies ',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for western blot applications',
'meta_title' => ' Western Blot - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-26 12:44:51',
'created' => '2015-01-07 09:20:00',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '29',
'position' => '10',
'parent_id' => '40',
'name' => 'IF',
'description' => '<p><strong>Immunofluorescence</strong>:</p>
<p>Diagenode offers huge selection of highly sensitive antibodies validated in IF.</p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15200229-IF.jpg" alt="" height="245" width="256" /></p>
<p><sup><strong>Immunofluorescence using the Diagenode monoclonal antibody directed against CRISPR/Cas9</strong></sup></p>
<p><sup>HeLa cells transfected with a Cas9 expression vector (left) or untransfected cells (right) were fixed in methanol at -20°C, permeabilized with acetone at -20°C and blocked with PBS containing 2% BSA. The cells were stained with the Cas9 C-terminal antibody (Cat. No. C15200229) diluted 1:400, followed by incubation with an anti-mouse secondary antibody coupled to AF488. The bottom images show counter-staining of the nuclei with Hoechst 33342.</sup></p>
<h5><sup>Check our selection of antibodies validated in IF.</sup></h5>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'immunofluorescence',
'meta_keywords' => 'Immunofluorescence,Monoclonal antibody,Polyclonal antibody',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for Immunofluorescence applications',
'meta_title' => 'Immunofluorescence - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-27 16:23:10',
'created' => '2015-07-08 13:46:02',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '42',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-seq (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-seq-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP Sequencing applications',
'meta_title' => 'ChIP Sequencing Antibodies (ChIP-Seq) | Diagenode',
'modified' => '2016-01-20 11:06:19',
'created' => '2015-10-20 11:44:45',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
[maximum depth reached]
)
)
),
'Category' => array(
(int) 0 => array(
'id' => '111',
'position' => '40',
'parent_id' => '4',
'name' => 'Histone antibodies',
'description' => '<p>Histones are the main protein components of chromatin involved in the compaction of DNA into nucleosomes, the basic units of chromatin. A <strong>nucleosome</strong> consists of one pair of each of the core histones (<strong>H2A</strong>, <strong>H2B</strong>, <strong>H3</strong> and <strong>H4</strong>) forming an octameric structure wrapped by 146 base pairs of DNA. The different nucleosomes are linked by the linker histone<strong> H1, </strong>allowing for further condensation of chromatin.</p>
<p>The core histones have a globular structure with large unstructured N-terminal tails protruding from the nucleosome. They can undergo to multiple post-translational modifications (PTM), mainly at the N-terminal tails. These <strong>post-translational modifications </strong>include methylation, acetylation, phosphorylation, ubiquitinylation, citrullination, sumoylation, deamination and crotonylation. The most well characterized PTMs are <strong>methylation,</strong> <strong>acetylation and phosphorylation</strong>. Histone methylation occurs mainly on lysine (K) residues, which can be mono-, di- or tri-methylated, and on arginines (R), which can be mono-methylated and symmetrically or asymmetrically di-methylated. Histone acetylation occurs on lysines and histone phosphorylation mainly on serines (S), threonines (T) and tyrosines (Y).</p>
<p>The PTMs of the different residues are involved in numerous processes such as DNA repair, DNA replication and chromosome condensation. They influence the chromatin organization and can be positively or negatively associated with gene expression. Trimethylation of H3K4, H3K36 and H3K79, and lysine acetylation generally result in an open chromatin configuration (figure below) and are therefore associated with <strong>euchromatin</strong> and gene activation. Trimethylation of H3K9, K3K27 and H4K20, on the other hand, is enriched in <strong>heterochromatin </strong>and associated with gene silencing. The combination of different histone modifications is called the "<strong>histone code</strong>”, analogous to the genetic code.</p>
<p><img src="https://www.diagenode.com/img/categories/antibodies/histone-marks-illustration.png" /></p>
<p>Diagenode is proud to offer a large range of antibodies against histones and histone modifications. Our antibodies are highly specific and have been validated in many applications, including <strong>ChIP</strong> and <strong>ChIP-seq</strong>.</p>
<p>Diagenode’s collection includes antibodies recognizing:</p>
<ul>
<li><strong>Histone H1 variants</strong></li>
<li><strong>Histone H2A, H2A variants and histone H2A</strong> <strong>modifications</strong> (serine phosphorylation, lysine acetylation, lysine ubiquitinylation)</li>
<li><strong>Histone H2B and H2B</strong> <strong>modifications </strong>(serine phosphorylation, lysine acetylation)</li>
<li><strong>Histone H3 and H3 modifications </strong>(lysine methylation (mono-, di- and tri-methylated), lysine acetylation, serine phosphorylation, threonine phosphorylation, arginine methylation (mono-methylated, symmetrically and asymmetrically di-methylated))</li>
<li><strong>Histone H4 and H4 modifications (</strong>lysine methylation (mono-, di- and tri-methylated), lysine acetylation, arginine methylation (mono-methylated and symmetrically di-methylated), serine phosphorylation )</li>
</ul>
<p><span style="font-weight: 400;"><strong>HDAC's HAT's, HMT's and other</strong> <strong>enzymes</strong> which modify histones can be found in the category <a href="../categories/chromatin-modifying-proteins-histone-transferase">Histone modifying enzymes</a><br /></span></p>
<p><span style="font-weight: 400;"> Diagenode’s highly validated antibodies:</span></p>
<ul>
<li><span style="font-weight: 400;"> Highly sensitive and specific</span></li>
<li><span style="font-weight: 400;"> Cost-effective (requires less antibody per reaction)</span></li>
<li><span style="font-weight: 400;"> Batch-specific data is available on the website</span></li>
<li><span style="font-weight: 400;"> Expert technical support</span></li>
<li><span style="font-weight: 400;"> Sample sizes available</span></li>
<li><span style="font-weight: 400;"> 100% satisfaction guarantee</span></li>
</ul>',
'no_promo' => false,
'in_menu' => false,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'histone-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Histone, antibody, histone h1, histone h2, histone h3, histone h4',
'meta_description' => 'Polyclonal and Monoclonal Antibodies against Histones and their modifications validated for many applications, including Chromatin Immunoprecipitation (ChIP) and ChIP-Sequencing (ChIP-seq)',
'meta_title' => 'Histone and Modified Histone Antibodies | Diagenode',
'modified' => '2020-09-17 13:34:56',
'created' => '2016-04-01 16:01:32',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 1 => array(
'id' => '17',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-seq grade antibodies',
'description' => '<p><b>Unparalleled ChIP-Seq results with the most rigorously validated antibodies</b></p>
<p><span style="font-weight: 400;">Diagenode provides leading solutions for epigenetic research. Because ChIP-seq is a widely-used technique, we validate our antibodies in ChIP and ChIP-seq experiments (in addition to conventional methods like Western blot, Dot blot, ELISA, and immunofluorescence) to provide the highest quality antibody. We standardize our validation and production to guarantee high product quality without technical bias. Diagenode guarantees ChIP-seq grade antibody performance under our suggested conditions.</span></p>
<div class="row">
<div class="small-12 medium-9 large-9 columns">
<p><strong>ChIP-seq profile</strong> of active (H3K4me3 and H3K36me3) and inactive (H3K27me3) marks using Diagenode antibodies.</p>
<img src="https://www.diagenode.com/img/categories/antibodies/chip-seq-grade-antibodies.png" /></div>
<div class="small-12 medium-3 large-3 columns">
<p><small> ChIP was performed on sheared chromatin from 100,000 K562 cells using iDeal ChIP-seq kit for Histones (cat. No. C01010051) with 1 µg of the Diagenode antibodies against H3K27me3 (cat. No. C15410195) and H3K4me3 (cat. No. C15410003), and 0.5 µg of the antibody against H3K36me3 (cat. No. C15410192). The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. The figure shows the signal distribution along the complete sequence of human chromosome 3, a zoomin to a 10 Mb region and a further zoomin to a 1.5 Mb region. </small></p>
</div>
</div>
<p>Diagenode’s highly validated antibodies:</p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-seq-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-seq grade antibodies,polyclonal antibody,WB, ELISA, ChIP-seq (ab), ChIP-qPCR (ab)',
'meta_description' => 'Diagenode Offers Wide Range of Validated ChIP-Seq Grade Antibodies for Unparalleled ChIP-Seq Results',
'meta_title' => 'Chromatin Immunoprecipitation ChIP-Seq Grade Antibodies | Diagenode',
'modified' => '2019-07-03 10:57:22',
'created' => '2015-02-16 02:24:01',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 2 => array(
'id' => '103',
'position' => '0',
'parent_id' => '4',
'name' => 'All antibodies',
'description' => '<p><span style="font-weight: 400;">All Diagenode’s antibodies are listed below. Please, use our Quick search field to find the antibody of interest by target name, application, purity.</span></p>
<p><span style="font-weight: 400;">Diagenode’s highly validated antibodies:</span></p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'all-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Antibodies,Premium Antibodies,Classic,Pioneer',
'meta_description' => 'Diagenode Offers Strict quality standards with Rigorous QC and validated Antibodies. Classified based on level of validation for flexibility of Application. Comprehensive selection of histone and non-histone Antibodies',
'meta_title' => 'Diagenode's selection of Antibodies is exclusively dedicated for Epigenetic Research | Diagenode',
'modified' => '2019-07-03 10:55:44',
'created' => '2015-11-02 14:49:22',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 3 => array(
'id' => '127',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-grade antibodies',
'description' => '<div class="row">
<div class="small-12 columns"><center></center>
<p><br />Chromatin immunoprecipitation (<b>ChIP</b>) is a technique to study the associations of proteins with the specific genomic regions in intact cells. One of the most important steps of this protocol is the immunoprecipitation of targeted protein using the antibody specifically recognizing it. The quality of antibodies used in ChIP is essential for the success of the experiment. Diagenode offers extensively validated ChIP-grade antibodies, confirmed for their specificity, and high level of performance in ChIP. Each batch is validated, and batch-specific data are available on the website.</p>
<p></p>
</div>
</div>
<p><strong>ChIP results</strong> obtained with the antibody directed against H3K4me3 (Cat. No. <a href="../p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul">C15410003</a>). </p>
<div class="row">
<div class="small-12 medium-6 large-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" alt="" width="400" height="315" /> </div>
<div class="small-12 medium-6 large-6 columns">
<p></p>
<p></p>
<p></p>
</div>
</div>
<p></p>
<p>Our aim at Diagenode is to offer the largest collection of highly specific <strong>ChIP-grade antibodies</strong>. We add new antibodies monthly. Find your ChIP-grade antibody in the list below and check more information about tested applications, extensive validation data, and product information.</p>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-grade antibodies, polyclonal antibody, monoclonal antibody, Diagenode',
'meta_description' => 'Diagenode Offers Extensively Validated ChIP-Grade Antibodies, Confirmed for their Specificity, and high level of Performance in Chromatin Immunoprecipitation ChIP',
'meta_title' => 'Chromatin immunoprecipitation ChIP-grade antibodies | Diagenode',
'modified' => '2024-11-19 17:27:07',
'created' => '2017-02-14 11:16:04',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
)
),
'Document' => array(
(int) 0 => array(
'id' => '455',
'name' => 'Datasheet H2AZac C15410202',
'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone H2A.Z containing the acetylated lysines 4, 7 and 11, using a KLH-conjugated synthetic peptide.</p>',
'image_id' => null,
'type' => 'Datasheet',
'url' => 'files/products/antibodies/Datasheet_H2AZac_C15410202.pdf',
'slug' => 'datasheet-h2azac-c15410202',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2017-01-23 11:28:00',
'created' => '2015-07-07 11:47:44',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '11',
'name' => 'Antibodies you can trust',
'description' => '<p style="text-align: justify;"><span>Epigenetic research tools have evolved over time from endpoint PCR to qPCR to the analyses of large sets of genome-wide sequencing data. ChIP sequencing (ChIP-seq) has now become the gold standard method for chromatin studies, given the accuracy and coverage scale of the approach over other methods. Successful ChIP-seq, however, requires a higher level of experimental accuracy and consistency in all steps of ChIP than ever before. Particularly crucial is the quality of ChIP antibodies. </span></p>',
'image_id' => null,
'type' => 'Poster',
'url' => 'files/posters/Antibodies_you_can_trust_Poster.pdf',
'slug' => 'antibodies-you-can-trust-poster',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2015-10-01 20:18:31',
'created' => '2015-07-03 16:05:15',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
[maximum depth reached]
)
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
'id' => '1783',
'name' => 'product/antibodies/chipseq-grade-ab-icon.png',
'alt' => 'ChIP-seq Grade',
'modified' => '2020-11-27 07:04:40',
'created' => '2018-03-15 15:54:09',
'ProductsImage' => array(
[maximum depth reached]
)
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
'id' => '3751',
'name' => 'Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy.',
'authors' => 'Fröb F, Sock E, Tamm ER, Saur AL, Hillgärtner S, Williams TJ, Fujii T, Fukunaga R, Wegner M',
'description' => '<p>Schwann cells ensure efficient nerve impulse conduction in the peripheral nervous system. Their development is accompanied by defined chromatin changes, including variant histone deposition and redistribution. To study the importance of variant histones for Schwann cell development, we altered their genomic distribution by conditionally deleting Ep400, the central subunit of the Tip60/Ep400 complex. Ep400 absence causes peripheral neuropathy in mice, characterized by terminal differentiation defects in myelinating and non-myelinating Schwann cells and immune cell activation. Variant histone H2A.Z is differently distributed throughout the genome and remains at promoters of Tfap2a, Pax3 and other transcriptional regulator genes with transient function at earlier developmental stages. Tfap2a deletion in Ep400-deficient Schwann cells causes a partial rescue arguing that continued expression of early regulators mediates the phenotypic defects. Our results show that proper genomic distribution of variant histones is essential for Schwann cell differentiation, and assign importance to Ep400-containing chromatin remodelers in the process.</p>',
'date' => '2019-05-29',
'pmid' => 'http://www.pubmed.gov/31142747',
'doi' => '10.1038/s41467-019-10287-w',
'modified' => '2019-10-03 12:24:20',
'created' => '2019-10-02 16:16:55',
'ProductsPublication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
[maximum depth reached]
)
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
'id' => '3835',
'name' => 'SDS C15410202 H2A Zac Antibody US en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-US-en-GHS_2_0-1.pdf',
'countries' => 'US',
'modified' => '2024-01-17 20:03:27',
'created' => '2024-01-17 20:03:27',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3837',
'name' => 'SDS C15410202 H2A Zac Antibody GB en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-GB-en-GHS_2_0-1.pdf',
'countries' => 'GB',
'modified' => '2024-01-17 20:04:00',
'created' => '2024-01-17 20:04:00',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '3836',
'name' => 'SDS C15410202 H2A Zac Antibody JP ja',
'language' => 'ja',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-JP-ja-GHS_3_0-1.pdf',
'countries' => 'JP',
'modified' => '2024-01-17 20:03:44',
'created' => '2024-01-17 20:03:44',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '3840',
'name' => 'SDS C15410202 H2A Zac Antibody DE de',
'language' => 'de',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-DE-de-GHS_2_0-1.pdf',
'countries' => 'DE',
'modified' => '2024-01-17 20:04:52',
'created' => '2024-01-17 20:04:52',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '3839',
'name' => 'SDS C15410202 H2A Zac Antibody ES es',
'language' => 'es',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-ES-es-GHS_2_0-1.pdf',
'countries' => 'ES',
'modified' => '2024-01-17 20:04:35',
'created' => '2024-01-17 20:04:35',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '3834',
'name' => 'SDS C15410202 H2A Zac Antibody BE fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-fr-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:03:08',
'created' => '2024-01-17 20:03:08',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 6 => array(
'id' => '3838',
'name' => 'SDS C15410202 H2A Zac Antibody FR fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-FR-fr-GHS_2_0-1.pdf',
'countries' => 'FR',
'modified' => '2024-01-17 20:04:17',
'created' => '2024-01-17 20:04:17',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 7 => array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
)
)
)
$meta_canonical = 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
$country = 'US'
$countries_allowed = array(
(int) 0 => 'CA',
(int) 1 => 'US',
(int) 2 => 'IE',
(int) 3 => 'GB',
(int) 4 => 'DK',
(int) 5 => 'NO',
(int) 6 => 'SE',
(int) 7 => 'FI',
(int) 8 => 'NL',
(int) 9 => 'BE',
(int) 10 => 'LU',
(int) 11 => 'FR',
(int) 12 => 'DE',
(int) 13 => 'CH',
(int) 14 => 'AT',
(int) 15 => 'ES',
(int) 16 => 'IT',
(int) 17 => 'PT'
)
$outsource = false
$other_formats = array(
(int) 0 => array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
)
$pro = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$edit = ''
$testimonials = ''
$featured_testimonials = ''
$related_products = ''
$rrbs_service = array(
(int) 0 => (int) 1894,
(int) 1 => (int) 1895
)
$chipseq_service = array(
(int) 0 => (int) 2683,
(int) 1 => (int) 1835,
(int) 2 => (int) 1836,
(int) 3 => (int) 2684,
(int) 4 => (int) 1838,
(int) 5 => (int) 1839,
(int) 6 => (int) 1856
)
$labelize = object(Closure) {
}
$old_catalog_number = ''
$country_code = 'US'
$other_format = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$img = 'banners/banner-cut_tag-chipmentation-500.jpg'
$label = '<img src="/img/banners/banner-customizer-back.png" alt=""/>'
$application = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
'id' => '4023',
'product_id' => '2276',
'application_id' => '43'
)
)
$slugs = array(
(int) 0 => 'chip-qpcr-antibodies'
)
$applications = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'locale' => 'eng'
)
$description = ''
$name = 'ChIP-qPCR (ab)'
$document = array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
'id' => '1309',
'product_id' => '2276',
'document_id' => '38'
)
)
$sds = array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
'id' => '6293',
'product_id' => '2276',
'safety_sheet_id' => '3841'
)
)
$publication = array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
'id' => '3360',
'product_id' => '2276',
'publication_id' => '3556'
)
)
$externalLink = ' <a href="http://www.pubmed.gov/30327463" target="_blank"><i class="fa fa-external-link"></i></a>'
include - APP/View/Products/view.ctp, line 755
View::_evaluate() - CORE/Cake/View/View.php, line 971
View::_render() - CORE/Cake/View/View.php, line 933
View::render() - CORE/Cake/View/View.php, line 473
Controller::render() - CORE/Cake/Controller/Controller.php, line 963
ProductsController::slug() - APP/Controller/ProductsController.php, line 1052
ReflectionMethod::invokeArgs() - [internal], line ??
Controller::invokeAction() - CORE/Cake/Controller/Controller.php, line 491
Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 193
Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167
[main] - APP/webroot/index.php, line 118
Notice (8): Undefined variable: campaign_id [APP/View/Products/view.ctp, line 755]Code Context<!-- BEGIN: REQUEST_FORM MODAL -->
<div id="request_formModal" class="reveal-modal medium" data-reveal aria-labelledby="modalTitle" aria-hidden="true" role="dialog">
<?= $this->element('Forms/simple_form', array('solution_of_interest' => $solution_of_interest, 'header' => $header, 'message' => $message, 'campaign_id' => $campaign_id)) ?>
$viewFile = '/home/website-server/www/app/View/Products/view.ctp'
$dataForView = array(
'language' => 'en',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'product' => array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Group' => array(
'Group' => array(
[maximum depth reached]
),
'Master' => array(
[maximum depth reached]
),
'Product' => array(
[maximum depth reached]
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
)
),
'Category' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
)
),
'Document' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
[maximum depth reached]
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
[maximum depth reached]
),
(int) 1 => array(
[maximum depth reached]
),
(int) 2 => array(
[maximum depth reached]
),
(int) 3 => array(
[maximum depth reached]
),
(int) 4 => array(
[maximum depth reached]
),
(int) 5 => array(
[maximum depth reached]
),
(int) 6 => array(
[maximum depth reached]
),
(int) 7 => array(
[maximum depth reached]
)
)
),
'meta_canonical' => 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
)
$language = 'en'
$meta_keywords = ''
$meta_description = 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.'
$meta_title = 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode'
$product = array(
'Product' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20',
'locale' => 'eng'
),
'Antibody' => array(
'host' => '*****',
'id' => '146',
'name' => 'H2A.Zac polyclonal antibody',
'description' => 'Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.',
'clonality' => '',
'isotype' => '',
'lot' => 'A1738P',
'concentration' => '1,09 µg/µl',
'reactivity' => 'Human, mouse, other (wide range)',
'type' => 'Polyclonal',
'purity' => 'Affinity purified',
'classification' => 'Premium',
'application_table' => '<table>
<thead>
<tr>
<th>Applications</th>
<th>Suggested dilution</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChIP/ChIP-seq <sup>*</sup></td>
<td>1 μg/IP</td>
<td>Fig 1, 2</td>
</tr>
<tr>
<td>ELISA</td>
<td>1:500</td>
<td>Fig 3</td>
</tr>
<tr>
<td>Dot Blotting</td>
<td>1:20,000</td>
<td>Fig 4</td>
</tr>
<tr>
<td>Western Blotting</td>
<td>1:1,000</td>
<td>Fig 5</td>
</tr>
<tr>
<td>Immunofluorescence</td>
<td>1:500</td>
<td>Fig 6</td>
</tr>
</tbody>
</table>
<p><small><sup>*</sup> Please note that the optimal antibody amount per IP should be determined by the end-user. We recommend testing 0.5-5 μg per IP.</small></p>',
'storage_conditions' => '',
'storage_buffer' => '',
'precautions' => 'This product is for research use only. Not for use in diagnostic or therapeutic procedures.',
'uniprot_acc' => '',
'slug' => '',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2019-09-11 13:59:04',
'created' => '0000-00-00 00:00:00',
'select_label' => '146 - H2A.Zac polyclonal antibody (A1738P - 1,09 µg/µl - Human, mouse, other (wide range) - Affinity purified - Rabbit)'
),
'Slave' => array(
(int) 0 => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
)
),
'Group' => array(
'Group' => array(
'id' => '30',
'name' => 'C15410202',
'product_id' => '2276',
'modified' => '2016-02-18 18:06:54',
'created' => '2016-02-18 18:06:54'
),
'Master' => array(
'id' => '2276',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody',
'description' => '<p><span>Polyclonal antibody raised in rabbit against the region of histone<strong> H2A.Z containing the acetylated lysines 4, 7 and 11,</strong> using a KLH-conjugated synthetic peptide. </span></p>',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => 'Target Description',
'info2' => '<p>Histones are the main constituents of the protein part of chromosomes of eukaryotic cells. They are rich in the amino acids arginine and lysine and have been greatly conserved during evolution. Histones pack the DNA into tight masses of chromatin. Two core histones of each class H2A, H2B, H3 and H4 assemble and are wrapped by 146 base pairs of DNA to form one octameric nucleosome. Histone tails undergo numerous post-translational modifications, which either directly or indirectly alter chromatin structure to facilitate transcriptional activation or repression or other nuclear processes. In addition to the genetic code, combinations of the different histone modifications reveal the so-called “histone code”. Histone methylation and demethylation is dynamically regulated by respectively histone methyl transferases and histone demethylases. Acetylation of the histone H2A variant H2A.Z is associated with the promoters of active genes.</p>',
'label3' => '',
'info3' => '',
'format' => '50 μg',
'catalog_number' => 'C15410202',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000581',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '480',
'price_USD' => '470',
'price_GBP' => '430',
'price_JPY' => '75190',
'price_CNY' => '',
'price_AUD' => '1175',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => true,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-50-mg-46-ml',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z acetylated at lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, DB, WB, IF and ELISA. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-11-19 16:50:03',
'created' => '2015-06-29 14:08:20'
),
'Product' => array(
(int) 0 => array(
[maximum depth reached]
)
)
),
'Related' => array(),
'Application' => array(
(int) 0 => array(
'id' => '20',
'position' => '10',
'parent_id' => '40',
'name' => 'ELISA',
'description' => '<div class="row">
<div class="small-12 medium-12 large-12 columns">Enzyme-linked immunosorbent assay.</div>
</div>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'elisa-antibodies',
'meta_keywords' => ' ELISA Antibodies,Monoclonal antibody, Polyclonal antibody',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for ELISA applications',
'meta_title' => 'ELISA Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 12:21:41',
'created' => '2014-07-08 08:13:28',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '28',
'position' => '10',
'parent_id' => '40',
'name' => 'DB',
'description' => '<p>Dot blotting</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'dot-blotting',
'meta_keywords' => 'Dot blotting,Monoclonal & Polyclonal antibody,',
'meta_description' => 'Diagenode offers Monoclonal & Polyclonal antibodies for Dot blotting applications',
'meta_title' => 'Dot blotting Antibodies - Monoclonal & Polyclonal antibody | Diagenode',
'modified' => '2016-01-13 14:40:49',
'created' => '2015-07-08 13:45:05',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '19',
'position' => '10',
'parent_id' => '40',
'name' => 'WB',
'description' => '<p><strong>Western blot</strong> : The quality of antibodies used in this technique is crucial for correct and specific protein identification. Diagenode offers huge selection of highly sensitive and specific western blot-validated antibodies.</p>
<p>Learn more about: <a href="https://www.diagenode.com/applications/western-blot">Loading control, MW marker visualization</a><em>. <br /></em></p>
<p><em></em>Check our selection of antibodies validated in Western blot.</p>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'western-blot-antibodies',
'meta_keywords' => ' Western Blot Antibodies ,western blot protocol,Western Blotting Products,Polyclonal antibodies ,monoclonal antibodies ',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for western blot applications',
'meta_title' => ' Western Blot - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-26 12:44:51',
'created' => '2015-01-07 09:20:00',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '29',
'position' => '10',
'parent_id' => '40',
'name' => 'IF',
'description' => '<p><strong>Immunofluorescence</strong>:</p>
<p>Diagenode offers huge selection of highly sensitive antibodies validated in IF.</p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15200229-IF.jpg" alt="" height="245" width="256" /></p>
<p><sup><strong>Immunofluorescence using the Diagenode monoclonal antibody directed against CRISPR/Cas9</strong></sup></p>
<p><sup>HeLa cells transfected with a Cas9 expression vector (left) or untransfected cells (right) were fixed in methanol at -20°C, permeabilized with acetone at -20°C and blocked with PBS containing 2% BSA. The cells were stained with the Cas9 C-terminal antibody (Cat. No. C15200229) diluted 1:400, followed by incubation with an anti-mouse secondary antibody coupled to AF488. The bottom images show counter-staining of the nuclei with Hoechst 33342.</sup></p>
<h5><sup>Check our selection of antibodies validated in IF.</sup></h5>',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'immunofluorescence',
'meta_keywords' => 'Immunofluorescence,Monoclonal antibody,Polyclonal antibody',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for Immunofluorescence applications',
'meta_title' => 'Immunofluorescence - Monoclonal antibody - Polyclonal antibody | Diagenode',
'modified' => '2016-04-27 16:23:10',
'created' => '2015-07-08 13:46:02',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '42',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-seq (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-seq-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP Sequencing applications',
'meta_title' => 'ChIP Sequencing Antibodies (ChIP-Seq) | Diagenode',
'modified' => '2016-01-20 11:06:19',
'created' => '2015-10-20 11:44:45',
'ProductsApplication' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
[maximum depth reached]
)
)
),
'Category' => array(
(int) 0 => array(
'id' => '111',
'position' => '40',
'parent_id' => '4',
'name' => 'Histone antibodies',
'description' => '<p>Histones are the main protein components of chromatin involved in the compaction of DNA into nucleosomes, the basic units of chromatin. A <strong>nucleosome</strong> consists of one pair of each of the core histones (<strong>H2A</strong>, <strong>H2B</strong>, <strong>H3</strong> and <strong>H4</strong>) forming an octameric structure wrapped by 146 base pairs of DNA. The different nucleosomes are linked by the linker histone<strong> H1, </strong>allowing for further condensation of chromatin.</p>
<p>The core histones have a globular structure with large unstructured N-terminal tails protruding from the nucleosome. They can undergo to multiple post-translational modifications (PTM), mainly at the N-terminal tails. These <strong>post-translational modifications </strong>include methylation, acetylation, phosphorylation, ubiquitinylation, citrullination, sumoylation, deamination and crotonylation. The most well characterized PTMs are <strong>methylation,</strong> <strong>acetylation and phosphorylation</strong>. Histone methylation occurs mainly on lysine (K) residues, which can be mono-, di- or tri-methylated, and on arginines (R), which can be mono-methylated and symmetrically or asymmetrically di-methylated. Histone acetylation occurs on lysines and histone phosphorylation mainly on serines (S), threonines (T) and tyrosines (Y).</p>
<p>The PTMs of the different residues are involved in numerous processes such as DNA repair, DNA replication and chromosome condensation. They influence the chromatin organization and can be positively or negatively associated with gene expression. Trimethylation of H3K4, H3K36 and H3K79, and lysine acetylation generally result in an open chromatin configuration (figure below) and are therefore associated with <strong>euchromatin</strong> and gene activation. Trimethylation of H3K9, K3K27 and H4K20, on the other hand, is enriched in <strong>heterochromatin </strong>and associated with gene silencing. The combination of different histone modifications is called the "<strong>histone code</strong>”, analogous to the genetic code.</p>
<p><img src="https://www.diagenode.com/img/categories/antibodies/histone-marks-illustration.png" /></p>
<p>Diagenode is proud to offer a large range of antibodies against histones and histone modifications. Our antibodies are highly specific and have been validated in many applications, including <strong>ChIP</strong> and <strong>ChIP-seq</strong>.</p>
<p>Diagenode’s collection includes antibodies recognizing:</p>
<ul>
<li><strong>Histone H1 variants</strong></li>
<li><strong>Histone H2A, H2A variants and histone H2A</strong> <strong>modifications</strong> (serine phosphorylation, lysine acetylation, lysine ubiquitinylation)</li>
<li><strong>Histone H2B and H2B</strong> <strong>modifications </strong>(serine phosphorylation, lysine acetylation)</li>
<li><strong>Histone H3 and H3 modifications </strong>(lysine methylation (mono-, di- and tri-methylated), lysine acetylation, serine phosphorylation, threonine phosphorylation, arginine methylation (mono-methylated, symmetrically and asymmetrically di-methylated))</li>
<li><strong>Histone H4 and H4 modifications (</strong>lysine methylation (mono-, di- and tri-methylated), lysine acetylation, arginine methylation (mono-methylated and symmetrically di-methylated), serine phosphorylation )</li>
</ul>
<p><span style="font-weight: 400;"><strong>HDAC's HAT's, HMT's and other</strong> <strong>enzymes</strong> which modify histones can be found in the category <a href="../categories/chromatin-modifying-proteins-histone-transferase">Histone modifying enzymes</a><br /></span></p>
<p><span style="font-weight: 400;"> Diagenode’s highly validated antibodies:</span></p>
<ul>
<li><span style="font-weight: 400;"> Highly sensitive and specific</span></li>
<li><span style="font-weight: 400;"> Cost-effective (requires less antibody per reaction)</span></li>
<li><span style="font-weight: 400;"> Batch-specific data is available on the website</span></li>
<li><span style="font-weight: 400;"> Expert technical support</span></li>
<li><span style="font-weight: 400;"> Sample sizes available</span></li>
<li><span style="font-weight: 400;"> 100% satisfaction guarantee</span></li>
</ul>',
'no_promo' => false,
'in_menu' => false,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'histone-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Histone, antibody, histone h1, histone h2, histone h3, histone h4',
'meta_description' => 'Polyclonal and Monoclonal Antibodies against Histones and their modifications validated for many applications, including Chromatin Immunoprecipitation (ChIP) and ChIP-Sequencing (ChIP-seq)',
'meta_title' => 'Histone and Modified Histone Antibodies | Diagenode',
'modified' => '2020-09-17 13:34:56',
'created' => '2016-04-01 16:01:32',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 1 => array(
'id' => '17',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-seq grade antibodies',
'description' => '<p><b>Unparalleled ChIP-Seq results with the most rigorously validated antibodies</b></p>
<p><span style="font-weight: 400;">Diagenode provides leading solutions for epigenetic research. Because ChIP-seq is a widely-used technique, we validate our antibodies in ChIP and ChIP-seq experiments (in addition to conventional methods like Western blot, Dot blot, ELISA, and immunofluorescence) to provide the highest quality antibody. We standardize our validation and production to guarantee high product quality without technical bias. Diagenode guarantees ChIP-seq grade antibody performance under our suggested conditions.</span></p>
<div class="row">
<div class="small-12 medium-9 large-9 columns">
<p><strong>ChIP-seq profile</strong> of active (H3K4me3 and H3K36me3) and inactive (H3K27me3) marks using Diagenode antibodies.</p>
<img src="https://www.diagenode.com/img/categories/antibodies/chip-seq-grade-antibodies.png" /></div>
<div class="small-12 medium-3 large-3 columns">
<p><small> ChIP was performed on sheared chromatin from 100,000 K562 cells using iDeal ChIP-seq kit for Histones (cat. No. C01010051) with 1 µg of the Diagenode antibodies against H3K27me3 (cat. No. C15410195) and H3K4me3 (cat. No. C15410003), and 0.5 µg of the antibody against H3K36me3 (cat. No. C15410192). The IP'd DNA was subsequently analysed on an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer's instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. The figure shows the signal distribution along the complete sequence of human chromosome 3, a zoomin to a 10 Mb region and a further zoomin to a 1.5 Mb region. </small></p>
</div>
</div>
<p>Diagenode’s highly validated antibodies:</p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-seq-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-seq grade antibodies,polyclonal antibody,WB, ELISA, ChIP-seq (ab), ChIP-qPCR (ab)',
'meta_description' => 'Diagenode Offers Wide Range of Validated ChIP-Seq Grade Antibodies for Unparalleled ChIP-Seq Results',
'meta_title' => 'Chromatin Immunoprecipitation ChIP-Seq Grade Antibodies | Diagenode',
'modified' => '2019-07-03 10:57:22',
'created' => '2015-02-16 02:24:01',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 2 => array(
'id' => '103',
'position' => '0',
'parent_id' => '4',
'name' => 'All antibodies',
'description' => '<p><span style="font-weight: 400;">All Diagenode’s antibodies are listed below. Please, use our Quick search field to find the antibody of interest by target name, application, purity.</span></p>
<p><span style="font-weight: 400;">Diagenode’s highly validated antibodies:</span></p>
<ul>
<li>Highly sensitive and specific</li>
<li>Cost-effective (requires less antibody per reaction)</li>
<li>Batch-specific data is available on the website</li>
<li>Expert technical support</li>
<li>Sample sizes available</li>
<li>100% satisfaction guarantee</li>
</ul>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'all-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'Antibodies,Premium Antibodies,Classic,Pioneer',
'meta_description' => 'Diagenode Offers Strict quality standards with Rigorous QC and validated Antibodies. Classified based on level of validation for flexibility of Application. Comprehensive selection of histone and non-histone Antibodies',
'meta_title' => 'Diagenode's selection of Antibodies is exclusively dedicated for Epigenetic Research | Diagenode',
'modified' => '2019-07-03 10:55:44',
'created' => '2015-11-02 14:49:22',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
),
(int) 3 => array(
'id' => '127',
'position' => '10',
'parent_id' => '4',
'name' => 'ChIP-grade antibodies',
'description' => '<div class="row">
<div class="small-12 columns"><center></center>
<p><br />Chromatin immunoprecipitation (<b>ChIP</b>) is a technique to study the associations of proteins with the specific genomic regions in intact cells. One of the most important steps of this protocol is the immunoprecipitation of targeted protein using the antibody specifically recognizing it. The quality of antibodies used in ChIP is essential for the success of the experiment. Diagenode offers extensively validated ChIP-grade antibodies, confirmed for their specificity, and high level of performance in ChIP. Each batch is validated, and batch-specific data are available on the website.</p>
<p></p>
</div>
</div>
<p><strong>ChIP results</strong> obtained with the antibody directed against H3K4me3 (Cat. No. <a href="../p/h3k4me3-polyclonal-antibody-premium-50-ug-50-ul">C15410003</a>). </p>
<div class="row">
<div class="small-12 medium-6 large-6 columns"><img src="https://www.diagenode.com/img/product/antibodies/C15410003-fig1-ChIP.jpg" alt="" width="400" height="315" /> </div>
<div class="small-12 medium-6 large-6 columns">
<p></p>
<p></p>
<p></p>
</div>
</div>
<p></p>
<p>Our aim at Diagenode is to offer the largest collection of highly specific <strong>ChIP-grade antibodies</strong>. We add new antibodies monthly. Find your ChIP-grade antibody in the list below and check more information about tested applications, extensive validation data, and product information.</p>',
'no_promo' => false,
'in_menu' => true,
'online' => true,
'tabular' => false,
'hide' => true,
'all_format' => false,
'is_antibody' => true,
'slug' => 'chip-grade-antibodies',
'cookies_tag_id' => null,
'meta_keywords' => 'ChIP-grade antibodies, polyclonal antibody, monoclonal antibody, Diagenode',
'meta_description' => 'Diagenode Offers Extensively Validated ChIP-Grade Antibodies, Confirmed for their Specificity, and high level of Performance in Chromatin Immunoprecipitation ChIP',
'meta_title' => 'Chromatin immunoprecipitation ChIP-grade antibodies | Diagenode',
'modified' => '2024-11-19 17:27:07',
'created' => '2017-02-14 11:16:04',
'ProductsCategory' => array(
[maximum depth reached]
),
'CookiesTag' => array([maximum depth reached])
)
),
'Document' => array(
(int) 0 => array(
'id' => '455',
'name' => 'Datasheet H2AZac C15410202',
'description' => '<p>Polyclonal antibody raised in rabbit against the region of histone H2A.Z containing the acetylated lysines 4, 7 and 11, using a KLH-conjugated synthetic peptide.</p>',
'image_id' => null,
'type' => 'Datasheet',
'url' => 'files/products/antibodies/Datasheet_H2AZac_C15410202.pdf',
'slug' => 'datasheet-h2azac-c15410202',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2017-01-23 11:28:00',
'created' => '2015-07-07 11:47:44',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '11',
'name' => 'Antibodies you can trust',
'description' => '<p style="text-align: justify;"><span>Epigenetic research tools have evolved over time from endpoint PCR to qPCR to the analyses of large sets of genome-wide sequencing data. ChIP sequencing (ChIP-seq) has now become the gold standard method for chromatin studies, given the accuracy and coverage scale of the approach over other methods. Successful ChIP-seq, however, requires a higher level of experimental accuracy and consistency in all steps of ChIP than ever before. Particularly crucial is the quality of ChIP antibodies. </span></p>',
'image_id' => null,
'type' => 'Poster',
'url' => 'files/posters/Antibodies_you_can_trust_Poster.pdf',
'slug' => 'antibodies-you-can-trust-poster',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2015-10-01 20:18:31',
'created' => '2015-07-03 16:05:15',
'ProductsDocument' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
[maximum depth reached]
)
)
),
'Feature' => array(),
'Image' => array(
(int) 0 => array(
'id' => '1783',
'name' => 'product/antibodies/chipseq-grade-ab-icon.png',
'alt' => 'ChIP-seq Grade',
'modified' => '2020-11-27 07:04:40',
'created' => '2018-03-15 15:54:09',
'ProductsImage' => array(
[maximum depth reached]
)
)
),
'Promotion' => array(),
'Protocol' => array(),
'Publication' => array(
(int) 0 => array(
'id' => '3751',
'name' => 'Ep400 deficiency in Schwann cells causes persistent expression of early developmental regulators and peripheral neuropathy.',
'authors' => 'Fröb F, Sock E, Tamm ER, Saur AL, Hillgärtner S, Williams TJ, Fujii T, Fukunaga R, Wegner M',
'description' => '<p>Schwann cells ensure efficient nerve impulse conduction in the peripheral nervous system. Their development is accompanied by defined chromatin changes, including variant histone deposition and redistribution. To study the importance of variant histones for Schwann cell development, we altered their genomic distribution by conditionally deleting Ep400, the central subunit of the Tip60/Ep400 complex. Ep400 absence causes peripheral neuropathy in mice, characterized by terminal differentiation defects in myelinating and non-myelinating Schwann cells and immune cell activation. Variant histone H2A.Z is differently distributed throughout the genome and remains at promoters of Tfap2a, Pax3 and other transcriptional regulator genes with transient function at earlier developmental stages. Tfap2a deletion in Ep400-deficient Schwann cells causes a partial rescue arguing that continued expression of early regulators mediates the phenotypic defects. Our results show that proper genomic distribution of variant histones is essential for Schwann cell differentiation, and assign importance to Ep400-containing chromatin remodelers in the process.</p>',
'date' => '2019-05-29',
'pmid' => 'http://www.pubmed.gov/31142747',
'doi' => '10.1038/s41467-019-10287-w',
'modified' => '2019-10-03 12:24:20',
'created' => '2019-10-02 16:16:55',
'ProductsPublication' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
[maximum depth reached]
)
)
),
'Testimonial' => array(),
'Area' => array(),
'SafetySheet' => array(
(int) 0 => array(
'id' => '3835',
'name' => 'SDS C15410202 H2A Zac Antibody US en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-US-en-GHS_2_0-1.pdf',
'countries' => 'US',
'modified' => '2024-01-17 20:03:27',
'created' => '2024-01-17 20:03:27',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 1 => array(
'id' => '3837',
'name' => 'SDS C15410202 H2A Zac Antibody GB en',
'language' => 'en',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-GB-en-GHS_2_0-1.pdf',
'countries' => 'GB',
'modified' => '2024-01-17 20:04:00',
'created' => '2024-01-17 20:04:00',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 2 => array(
'id' => '3836',
'name' => 'SDS C15410202 H2A Zac Antibody JP ja',
'language' => 'ja',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-JP-ja-GHS_3_0-1.pdf',
'countries' => 'JP',
'modified' => '2024-01-17 20:03:44',
'created' => '2024-01-17 20:03:44',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 3 => array(
'id' => '3840',
'name' => 'SDS C15410202 H2A Zac Antibody DE de',
'language' => 'de',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-DE-de-GHS_2_0-1.pdf',
'countries' => 'DE',
'modified' => '2024-01-17 20:04:52',
'created' => '2024-01-17 20:04:52',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 4 => array(
'id' => '3839',
'name' => 'SDS C15410202 H2A Zac Antibody ES es',
'language' => 'es',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-ES-es-GHS_2_0-1.pdf',
'countries' => 'ES',
'modified' => '2024-01-17 20:04:35',
'created' => '2024-01-17 20:04:35',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 5 => array(
'id' => '3834',
'name' => 'SDS C15410202 H2A Zac Antibody BE fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-fr-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:03:08',
'created' => '2024-01-17 20:03:08',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 6 => array(
'id' => '3838',
'name' => 'SDS C15410202 H2A Zac Antibody FR fr',
'language' => 'fr',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-FR-fr-GHS_2_0-1.pdf',
'countries' => 'FR',
'modified' => '2024-01-17 20:04:17',
'created' => '2024-01-17 20:04:17',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
),
(int) 7 => array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
[maximum depth reached]
)
)
)
)
$meta_canonical = 'https://www.diagenode.com/en/p/h2a-zac-polyclonal-antibody-premium-50-mg-46-ml'
$country = 'US'
$countries_allowed = array(
(int) 0 => 'CA',
(int) 1 => 'US',
(int) 2 => 'IE',
(int) 3 => 'GB',
(int) 4 => 'DK',
(int) 5 => 'NO',
(int) 6 => 'SE',
(int) 7 => 'FI',
(int) 8 => 'NL',
(int) 9 => 'BE',
(int) 10 => 'LU',
(int) 11 => 'FR',
(int) 12 => 'DE',
(int) 13 => 'CH',
(int) 14 => 'AT',
(int) 15 => 'ES',
(int) 16 => 'IT',
(int) 17 => 'PT'
)
$outsource = false
$other_formats = array(
(int) 0 => array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
)
$pro = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$edit = ''
$testimonials = ''
$featured_testimonials = ''
$related_products = ''
$rrbs_service = array(
(int) 0 => (int) 1894,
(int) 1 => (int) 1895
)
$chipseq_service = array(
(int) 0 => (int) 2683,
(int) 1 => (int) 1835,
(int) 2 => (int) 1836,
(int) 3 => (int) 2684,
(int) 4 => (int) 1838,
(int) 5 => (int) 1839,
(int) 6 => (int) 1856
)
$labelize = object(Closure) {
}
$old_catalog_number = ''
$country_code = 'US'
$other_format = array(
'id' => '2277',
'antibody_id' => '146',
'name' => 'H2A.Zac Antibody (sample size)',
'description' => '',
'label1' => 'Validation Data',
'info1' => '<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-A.png" alt="H2A.Zac Antibody ChIP Grade" caption="false" width="278" height="246" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIP-B.png" alt="H2A.Zac Antibody for ChIP" caption="false" width="278" height="244" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 1. ChIP results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> Figure 1A ChIP assays were performed using human HeLa cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer pairs for qPCR. ChIP was performed with the ““Auto Histone ChIP-seq” kit (Cat. No. AB-Auto02-A100) on the IP-Star automated system, using sheared chromatin from 1,000,000 cells. A titration consisting of 1, 2, 5 and 10 μg of antibody per ChIP experiment was analyzed. IgG (2 μg/IP) was used as a negative IP control. Figure 1B ChIP assays were performed using human K562 cells, the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and optimized PCR primer sets for qPCR. ChIP was performed with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) on sheared chromatin from 100,000 cells. A titration of the antibody consisting of 0.2, 0.5, 1 and 2 μg per ChIP experiment was analysed. IgG (1 μg/IP) was used as negative IP control. Quantitative PCR was performed with primers specific for the promoter of the active genes CCT5 and EIF4A2, used as positive controls, and for the coding region of the inactive MYT1 gene and the Sat2 satellite repeat, used as negative controls. Figure 1 shows the recovery, expressed as a % of input (the relative amount of immunoprecipitated DNA compared to input DNA after qPCR analysis). </small></p>
</div>
</div>
<div class="row">
<div class="small-6 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-A.png" alt="H2A.Zac Antibody ChIP-seq Grade" caption="false" width="432" height="53" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-B.png" alt="H2A.Zac Antibody for ChIP-seq" caption="false" width="432" height="71" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-C.png" alt="H2A.Zac Antibody for ChIP-seq assay" caption="false" width="432" height="82" /></p>
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ChIPseq-D.png" alt="H2A.Zac Antibody validated in ChIP-seq " caption="false" width="432" height="76" /></p>
</div>
<div class="small-6 columns">
<p><small><strong> Figure 2. ChIP-seq results obtained with the Diagenode antibody directed against H2A.Zac</strong><br /> ChIP was performed on sheared chromatin from 100,000 K562 cells using 1 μg the Diagenode antibody against H2A.Zac (Cat. No. C15410202) with the “iDeal ChIP-seq” kit (Cat. No. AB-001-0024) as described above. The IP’d DNA was subsequently analysed with an Illumina Genome Analyzer. Library preparation, cluster generation and sequencing were performed according to the manufacturer’s instructions. The 36 bp tags were aligned to the human genome using the ELAND algorithm. Figure 2 shows the peak distribution along the complete sequence and a 1.5 Mb region of the X-chromosome (figure 2A and B) and in two regions surrounding the EIF4A2 and CCT5 positive control genes, respectively (figure 2C and D). </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_ELISA.png" alt="H2A.Zac Antibody ELISA validation" caption="false" width="278" height="211" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 3. Determination of the antibody titer</strong><br /> To determine the titer of the antibody, an ELISA was performed using a serial dilution of the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antigen used was a peptide containing the histone modifications of interest. By plotting the absorbance against the antibody dilution (Figure 3), the titer of the antibody was estimated to be 1:56,600. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_DotBlot.png" alt="H2A.Zac Antibody validated in Dot Blot" caption="false" width="278" height="390" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 4. Cross reactivity tests using the Diagenode antibody directed against H2A.Zac</strong><br /> To test the cross reactivity of the Diagenode antibody against H2A.Zac (Cat. No. C15410202), a Dot Blot analysis was performed with peptides containing different multiple acetylations and the unmodified H2A.Z. One hundred to 0.2 pmol of the respective peptides were spotted on a membrane. The antibody was used at a dilution of 1:20,000. Figure 4 shows a high specificity of the antibody for the modification of interest. </small></p>
</div>
</div>
<div class="row">
<div class="small-4 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_WB.png" alt="H2A.Zac Antibody validated in Western Blot" caption="false" width="278" height="217" /></p>
</div>
<div class="small-8 columns">
<p><small><strong> Figure 5. Western blot analysis using the Diagenode antibody directed against H2A.Zac</strong><br /> Western blot was performed on whole cell extracts (25 μg, lane 1) from HeLa cells, and on 1 μg of recombinant histone H2A, H2B, H3 and H4 (lane 2, 3, 4 and 5, respectively) using the Diagenode antibody against H2A.Zac (Cat. No. C15410202). The antibody was diluted 1:1,000 in TBS-Tween containing 5% skimmed milk. The position of the protein of interest is indicated on the right, the marker (in kDa) is shown on the left. </small></p>
</div>
</div>
<div class="row">
<div class="small-5 columns">
<p><img src="https://www.diagenode.com/img/product/antibodies/C15410202_A1738P_IF.png" alt="H2A.Zac Antibody validated in Immunofluorescence" caption="false" width="354" height="87" /></p>
</div>
<div class="small-7 columns">
<p><small><strong> Figure 6. Immunofluorescence using the Diagenode antibody directed against H2A.Zac</strong><br /> HeLa cells were stained with the Diagenode antibody against H2A.Zac (Cat. No. C15410202) and with DAPI. Cells were fixed with 4% formaldehyde for 10’ and blocked with PBS/TX-100 containing 5% normal goat serum and 1% BSA. The cells were immunofluorescently labeled with the H2A.Zac antibody (left) diluted 1:500 in blocking solution followed by an anti-rabbit antibody conjugated to Alexa488. The middle panel shows staining of the nuclei with DAPI. A merge of the two stainings is shown on the right. </small></p>
</div>
</div>',
'label2' => '',
'info2' => '',
'label3' => '',
'info3' => '',
'format' => '10 µg',
'catalog_number' => 'C15410202-10',
'old_catalog_number' => '',
'sf_code' => 'C15410202-D001-000582',
'type' => 'FRE',
'search_order' => '03-Antibody',
'price_EUR' => '125',
'price_USD' => '115',
'price_GBP' => '115',
'price_JPY' => '19580',
'price_CNY' => '',
'price_AUD' => '288',
'country' => 'ALL',
'except_countries' => 'None',
'quote' => false,
'in_stock' => false,
'featured' => false,
'no_promo' => false,
'online' => true,
'master' => false,
'last_datasheet_update' => '0000-00-00',
'slug' => 'h2a-zac-polyclonal-antibody-premium-sample-size-10-ug',
'meta_title' => 'H2A.Zac Antibody - ChIP-seq Grade (C15410202) | Diagenode',
'meta_keywords' => '',
'meta_description' => 'H2A.Zac (Histone H2A.Z containing the acetylated lysines 4, 7 and 11) Polyclonal Antibody validated in ChIP-seq, ChIP-qPCR, ELISA, DB, WB and IF. Batch-specific data available on the website. Sample size available.',
'modified' => '2024-01-17 20:06:07',
'created' => '2015-06-29 14:08:20',
'ProductsGroup' => array(
'id' => '37',
'product_id' => '2277',
'group_id' => '30'
)
)
$img = 'banners/banner-cut_tag-chipmentation-500.jpg'
$label = '<img src="/img/banners/banner-customizer-back.png" alt=""/>'
$application = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'ProductsApplication' => array(
'id' => '4023',
'product_id' => '2276',
'application_id' => '43'
)
)
$slugs = array(
(int) 0 => 'chip-qpcr-antibodies'
)
$applications = array(
'id' => '43',
'position' => '10',
'parent_id' => '40',
'name' => 'ChIP-qPCR (ab)',
'description' => '',
'in_footer' => false,
'in_menu' => false,
'online' => true,
'tabular' => true,
'slug' => 'chip-qpcr-antibodies',
'meta_keywords' => 'Chromatin Immunoprecipitation Sequencing,ChIP-Seq,ChIP-seq grade antibodies,DNA purification,qPCR,Shearing of chromatin',
'meta_description' => 'Diagenode offers a wide range of antibodies and technical support for ChIP-qPCR applications',
'meta_title' => 'ChIP Quantitative PCR Antibodies (ChIP-qPCR) | Diagenode',
'modified' => '2016-01-20 11:30:24',
'created' => '2015-10-20 11:45:36',
'locale' => 'eng'
)
$description = ''
$name = 'ChIP-qPCR (ab)'
$document = array(
'id' => '38',
'name' => 'Epigenetic Antibodies Brochure',
'description' => '<p>More than in any other immuoprecipitation assays, quality antibodies are critical tools in many epigenetics experiments. Since 10 years, Diagenode has developed the most stringent quality production available on the market for antibodies exclusively focused on epigenetic uses. All our antibodies have been qualified to work in epigenetic applications.</p>',
'image_id' => null,
'type' => 'Brochure',
'url' => 'files/brochures/Epigenetic_Antibodies_Brochure.pdf',
'slug' => 'epigenetic-antibodies-brochure',
'meta_keywords' => '',
'meta_description' => '',
'modified' => '2016-06-15 11:24:06',
'created' => '2015-07-03 16:05:27',
'ProductsDocument' => array(
'id' => '1309',
'product_id' => '2276',
'document_id' => '38'
)
)
$sds = array(
'id' => '3841',
'name' => 'SDS C15410202 H2A Zac Antibody BE nl',
'language' => 'nl',
'url' => 'files/SDS/H2A_Zac/SDS-C15410202-H2A_Zac_Antibody-BE-nl-GHS_2_0-1.pdf',
'countries' => 'BE',
'modified' => '2024-01-17 20:05:10',
'created' => '2024-01-17 20:05:10',
'ProductsSafetySheet' => array(
'id' => '6293',
'product_id' => '2276',
'safety_sheet_id' => '3841'
)
)
$publication = array(
'id' => '3556',
'name' => 'PWWP2A binds distinct chromatin moieties and interacts with an MTA1-specific core NuRD complex.',
'authors' => 'Link S, Spitzer RMM, Sana M, Torrado M, Völker-Albert MC, Keilhauer EC, Burgold T, Pünzeler S, Low JKK, Lindström I, Nist A, Regnard C, Stiewe T, Hendrich B, Imhof A, Mann M, Mackay JP, Bartkuhn M, Hake SB',
'description' => '<p>Chromatin structure and function is regulated by reader proteins recognizing histone modifications and/or histone variants. We recently identified that PWWP2A tightly binds to H2A.Z-containing nucleosomes and is involved in mitotic progression and cranial-facial development. Here, using in vitro assays, we show that distinct domains of PWWP2A mediate binding to free linker DNA as well as H3K36me3 nucleosomes. In vivo, PWWP2A strongly recognizes H2A.Z-containing regulatory regions and weakly binds H3K36me3-containing gene bodies. Further, PWWP2A binds to an MTA1-specific subcomplex of the NuRD complex (M1HR), which consists solely of MTA1, HDAC1, and RBBP4/7, and excludes CHD, GATAD2 and MBD proteins. Depletion of PWWP2A leads to an increase of acetylation levels on H3K27 as well as H2A.Z, presumably by impaired chromatin recruitment of M1HR. Thus, this study identifies PWWP2A as a complex chromatin-binding protein that serves to direct the deacetylase complex M1HR to H2A.Z-containing chromatin, thereby promoting changes in histone acetylation levels.</p>',
'date' => '2018-10-16',
'pmid' => 'http://www.pubmed.gov/30327463',
'doi' => '10.1038/s41467-018-06665-5',
'modified' => '2019-07-22 09:17:39',
'created' => '2019-03-21 14:12:08',
'ProductsPublication' => array(
'id' => '3360',
'product_id' => '2276',
'publication_id' => '3556'
)
)
$externalLink = ' <a href="http://www.pubmed.gov/30327463" target="_blank"><i class="fa fa-external-link"></i></a>'
include - APP/View/Products/view.ctp, line 755
View::_evaluate() - CORE/Cake/View/View.php, line 971
View::_render() - CORE/Cake/View/View.php, line 933
View::render() - CORE/Cake/View/View.php, line 473
Controller::render() - CORE/Cake/Controller/Controller.php, line 963
ProductsController::slug() - APP/Controller/ProductsController.php, line 1052
ReflectionMethod::invokeArgs() - [internal], line ??
Controller::invokeAction() - CORE/Cake/Controller/Controller.php, line 491
Dispatcher::_invoke() - CORE/Cake/Routing/Dispatcher.php, line 193
Dispatcher::dispatch() - CORE/Cake/Routing/Dispatcher.php, line 167
[main] - APP/webroot/index.php, line 118
×