Diagenode

CD4(+) T cell lineage integrity is controlled by the histone deacetylases HDAC1 and HDAC2.


Boucheron N, Tschismarov R, Goeschl L, Moser MA, Lagger S, Sakaguchi S, Winter M, Lenz F, Vitko D, Breitwieser FP, Müller L, Hassan H, Bennett KL, Colinge J, Schreiner W, Egawa T, Taniuchi I, Matthias P, Seiser C, Ellmeier W

Molecular mechanisms that maintain lineage integrity of helper T cells are largely unknown. Here we show histone deacetylases 1 and 2 (HDAC1 and HDAC2) as crucial regulators of this process. Loss of HDAC1 and HDAC2 during late T cell development led to the appearance of major histocompatibility complex (MHC) class II-selected CD4(+) helper T cells that expressed CD8-lineage genes such as Cd8a and Cd8b1. HDAC1 and HDAC2-deficient T helper type 0 (TH0) and TH1 cells further upregulated CD8-lineage genes and acquired a CD8(+) effector T cell program in a manner dependent on Runx-CBFβ complexes, whereas TH2 cells repressed features of the CD8(+) lineage independently of HDAC1 and HDAC2. These results demonstrate that HDAC1 and HDAC2 maintain integrity of the CD4 lineage by repressing Runx-CBFβ complexes that otherwise induce a CD8(+) effector T cell-like program in CD4(+) T cells.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR

Share this article

Published
May, 2014

Source

Events

  • EpiNantes 2024
    Nantes, France
    Sep 24-Sep 25, 2024
  • Nanopore Research Day Antwerp
    Antwerp, Belgium
    Sep 27, 2024
  • 10th Canadian Conference on Epigenetics
    Ontario, Canada
    Oct 1-Oct 4, 2024
 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy