Diagenode

Genomic integrity of ground-state pluripotency.


Jafari N, Giehr P, Hesaraki M, Baas R, de Graaf P, Timmers HTM, Walter J, Baharvand H, Totonchi M

Pluripotent cells appear to be in a transient state during early development. These cells have the capability to transition into embryonic stem cells (ESCs). It has been reported that mouse pluripotent cells cultivated in chemically defined media sustain the ground state of pluripotency. Because the epigenetic pattern of pluripotent cells reflects their environment, culture under different conditions causes epigenetic changes, which could lead to genomic instability. This study focused on the DNA methylation pattern of repetitive elements (REs) and their activation levels under two ground-state conditions and assessed the genomic integrity of ESCs. We measured the methylation and expression level of REs in different media. The results indicated that although the ground-state conditions show higher REs activity, they did not lead to DNA damage; therefore, the level of genomic instability is lower under the ground-state compared with the conventional condition. Our results indicated that when choosing an optimum condition, different features of the condition must be considered to have epigenetically and genomically stable stem cells.

Tags
Antibody

Share this article

Published
December, 2018

Source

Products used in this publication

  • Mouse IgG
    C15200006-100
    5-methylcytosine (5-mC) Antibody - cl. b
  • Mouse IgG
    C15310210-100
    5-hydroxymethylcytosine (5-hmC) Antibody (rabbit)

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy