Diagenode

A stress-responsive enhancer induces dynamic drug resistance in acute myeloid leukemia.


Williams MS, Amaral FM, Simeoni F, Somervaille TC

The drug efflux pump ABCB1 is a key driver of chemoresistance, and high expression predicts for treatment failure in acute myeloid leukemia (AML). In this study, we identified and functionally validated the network of enhancers that controls expression of ABCB1. We show that exposure of leukemia cells to daunorubicin activated an integrated stress response-like transcriptional program to induce ABCB1 through remodeling and activation of an ATF4-bound, stress-responsive enhancer. Protracted stress primed enhancers for rapid increases in activity following re-exposure of cells to daunorubicin, providing an epigenetic memory of prior drug treatment. In primary human AML, exposure of fresh blast cells to daunorubicin activated the stress-responsive enhancer and led to dose-dependent induction of ABCB1. Dynamic induction of ABCB1 by diverse stressors, including chemotherapy, facilitated escape of leukemia cells from targeted third-generation ABCB1 inhibition, providing an explanation for the failure of ABCB1 inhibitors in clinical trials. Stress-induced up regulation of ABCB1 was mitigated by combined use of pharmacologic inhibitors U0126 and ISRIB, which inhibit stress signalling and have potential for use as adjuvants to enhance the activity of ABCB1 inhibitors.

Tags
Microplex Library Preparation kit

Share this article

Published
November, 2019

Source

Products used in this publication

  • default alt
    C01019027
    ChIP Cross-link Gold
  • ChIP kit icon
    C05010012
    MicroPlex Library Preparation Kit v2 (12 indexes)

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy