Diagenode

Genetic perturbation of PU.1 binding and chromatin looping at neutrophilenhancers associates with autoimmune disease.


Watt, Stephen et al.

Neutrophils play fundamental roles in innate immune response, shape adaptive immunity, and are a potentially causal cell type underpinning genetic associations with immune system traits and diseases. Here, we profile the binding of myeloid master regulator PU.1 in primary neutrophils across nearly a hundred volunteers. We show that variants associated with differential PU.1 binding underlie genetically-driven differences in cell count and susceptibility to autoimmune and inflammatory diseases. We integrate these results with other multi-individual genomic readouts, revealing coordinated effects of PU.1 binding variants on the local chromatin state, enhancer-promoter contacts and downstream gene expression, and providing a functional interpretation for 27 genes underlying immune traits. Collectively, these results demonstrate the functional role of PU.1 and its target enhancers in neutrophil transcriptional control and immune disease susceptibility.

Tags
Antibody

Share this article

Published
April, 2021

Source

Products used in this publication

  • cut and tag antibody icon
    C15410210
    CTCF Antibody
  • cut and tag antibody icon
    C15410195
    H3K27me3 Antibody
  • cut and tag antibody icon
    C15410003
    H3K4me3 Antibody
  • Bioruptor Pico
    B01080010
    Bioruptor® Pico sonication device

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy