Diagenode

ZNF718, HOXA4, and ZFP57 are differentially methylated inperiodontitis in comparison with periodontal health: Epigenome-wide DNAmethylation pilot study.


Hernández H.G. et al.

OBJECTIVE: To investigate the differences in the epigenomic patterns of DNA methylation in peripheral leukocytes between patients with periodontitis and gingivally healthy controls evaluating its functional meaning by functional enrichment analysis. BACKGROUND: The DNA methylation profiling of peripheral leukocytes as immune-related tissue potentially relevant as a source of biomarkers between periodontitis patients and gingivally healthy subjects has not been investigated. METHODS: A DNA methylation epigenome-wide study of peripheral leukocytes was conducted using the Illumina MethylationEPIC platform in sixteen subjects, eight diagnosed with periodontitis patients and eight age-matched and sex-matched periodontally healthy controls. A trained periodontist performed the clinical evaluation. Global DNA methylation was estimated using methylation-sensitive high-resolution melting in LINE1. Routine cell count cytometry and metabolic laboratory tests were also performed. The analysis of differentially methylated positions (DMPs) and differentially methylated regions (DMRs) was made using R/Bioconductor environment considering leukocyte populations assessed in both routine cell counts and using the FlowSorted.Blood.EPIC package. Finally, a DMP and DMR intersection analysis was performed. Functional enrichment analysis was carried out with the differentially methylated genes found in DMP. RESULTS: DMP analysis identified 81 differentially hypermethylated genes and 21 differentially hypomethylated genes. Importantly, the intersection analysis showed that zinc finger protein 718 (ZNF718) and homeobox A4 (HOXA4) were differentially hypermethylated and zinc finger protein 57 (ZFP57) was differentially hypomethylated in periodontitis. The functional enrichment analysis found clearly immune-related ontologies such as "detection of bacterium" and "antigen processing and presentation." CONCLUSION: The results of this study propose three new periodontitis-related genes: ZNF718, HOXA4, and ZFP57 but also evidence the suitability and relevance of studying leukocytes' DNA methylome for biological interpretation of systemic immune-related epigenetic patterns in periodontitis.

Tags
Infinium Human MethylationEPIC Array Service

Share this article

Published
March, 2021

Source

Products used in this publication

  • default alt
    G02090000
    Infinium MethylationEPIC Array Service
  • default alt
    G0209006
    NEW Infinium Methylation EPIC Array Service V2

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy