Somatic mutations continuously accumulate in the human genome, posing vulnerabilities towards aging and increased risk of various diseases. However, accurate detection of somatic mutations at the whole genome scale is still challenging. By tagging and independently sequencing the two complementary strands of DNA, the recent development of duplex-sequencing methods has greatly improved the detection accuracy, however, the limited genome coverage and the compromised compatibility with existing sequencing platforms have constrained the broad applications of these methods.
To overcome these technical challenges, here we developed a duplex sequencing method with comprehensive genome coverage, which we refer to as CompDuplex-seq. The streamlined chemistry of CompDuplex assay allows efficient generation of libraries readily compatible with standard Illumina 2x150 paired-end sequencing. In addition, we validated the accuracy of somatic mutation calling and comprehensive genome coverage of CompDuplex by profiling a single-cell expanded clone. To summarize, CompDuplex chemistry supports genome-wide coverage while maintaining high accuracy, which we believe will facilitate the whole genome characterization of somatic mosaicism in various biological systems.