Diagenode

Transgenerational inheritance of diabetes susceptibility in male offspring with maternal androgen exposure


Yuqing Zhang et al.

Androgen exposure (AE) poses a profound health threat to women, yet its transgenerational impacts on male descendants remain unclear. Here, employing a large-scale mother-child cohort, we show that maternal hyperandrogenism predisposes sons to β-cell dysfunction. Male offspring mice with prenatal AE exhibited hyperglycemia and glucose intolerance across three generations, which were further exacerbated by aging and a high-fat diet. Mechanistically, compromised insulin secretion underlies this transgenerational susceptibility to diabetes. Integrated analyses of methylome and transcriptome revealed differential DNA methylation of β-cell functional genes in AE-F1 sperm, which was transmitted to AE-F2 islets and further retained in AE-F2 sperm, leading to reduced expression of genes related to insulin secretion, including Pdx1, Irs1, Ptprn2, and Cacna1c. The methylation signatures in AE-F1 sperm were corroborated in diabetic humans and the blood of sons with maternal hyperandrogenism. Moreover, caloric restriction and metformin treatments normalized hyperglycemia in AE-F1 males and blocked their inheritance to offspring by restoring the aberrant sperm DNA methylations. Our findings highlight the transgenerational inheritance of impaired glucose homeostasis in male offspring from maternal AE via DNA methylation changes, providing methylation biomarkers and therapeutic strategies to safeguard future generations’ metabolic health.

Tags
MagMeDIP kit

Share this article

Published
February, 2025

Source

Products used in this publication

  • MagMeDIP qPCR Kit box
    C02010021
    MagMeDIP Kit
  • Mouse IgG
    C15200081-100
    5-methylcytosine (5-mC) Antibody - clone 33D3

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy