Diagenode

Mapping molecular landmarks of human skeletal ontogeny and pluripotent stem cell-derived articular chondrocytes.


Ferguson GB, Van Handel B, Bay M, Fiziev P, Org T, Lee S, Shkhyan R, Banks NW, Scheinberg M, Wu L, Saitta B, Elphingstone J, Larson AN, Riester SM, Pyle AD, Bernthal NM, Mikkola HK, Ernst J, van Wijnen AJ, Bonaguidi M, Evseenko D

Tissue-specific gene expression defines cellular identity and function, but knowledge of early human development is limited, hampering application of cell-based therapies. Here we profiled 5 distinct cell types at a single fetal stage, as well as chondrocytes at 4 stages in vivo and 2 stages during in vitro differentiation. Network analysis delineated five tissue-specific gene modules; these modules and chromatin state analysis defined broad similarities in gene expression during cartilage specification and maturation in vitro and in vivo, including early expression and progressive silencing of muscle- and bone-specific genes. Finally, ontogenetic analysis of freshly isolated and pluripotent stem cell-derived articular chondrocytes identified that integrin alpha 4 defines 2 subsets of functionally and molecularly distinct chondrocytes characterized by their gene expression, osteochondral potential in vitro and proliferative signature in vivo. These analyses provide new insight into human musculoskeletal development and provide an essential comparative resource for disease modeling and regenerative medicine.

Tags
Antibody
LowCell ChIP kit

Share this article

Published
September, 2018

Source

Products used in this publication

  • cut and tag antibody icon
    C15410196
    H3K27ac polyclonal antibody
  • cut and tag antibody icon
    C15410195
    H3K27me3 polyclonal antibody
  • cut and tag antibody icon
    C15410194
    H3K4me1 polyclonal antibody
  • cut and tag antibody icon
    C15410003-50
    H3K4me3 polyclonal antibody

       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy