Diagenode

Dynamic changes in DNA methylation and hydroxymethylation when hES cells undergo differentiation toward a neuronal lineage.


Kim M, Park YK, Kang TW, Lee SH, Rhee YH, Park JL, Kim HJ, Lee D, Lee D, Kim SY, Kim YS

DNA methylation and hydroxymethylation have been implicated in normal development and differentiation, but our knowledge is limited about the genome-wide distribution of 5-methylcytosine (5 mC) and 5-hydroxymethylcytosine (5 hmC) during cellular differentiation. Using an in vitro model system of gradual differentiation of human embryonic stem (hES) cells into ventral midbrain-type neural precursor cells and terminally into dopamine neurons, we observed dramatic genome-wide changes in 5 mC and 5 hmC patterns during lineage commitment. The 5 hmC pattern was dynamic in promoters, exons and enhancers. DNA hydroxymethylation within the gene body was associated with gene activation. The neurogenesis-related genes NOTCH1, RGMA and AKT1 acquired 5 hmC in the gene body and were up-regulated during differentiation. DNA methylation in the promoter was associated with gene repression. The pluripotency-related genes POU5F1, ZFP42 and HMGA1 acquired 5 mC in their promoters and were down-regulated during differentiation. Promoter methylation also acted as a locking mechanism to maintain gene silencing. The mesoderm development-related genes NKX2-8, TNFSF11 and NFATC1 acquired promoter methylation during neural differentiation even though they were already silenced in hES cells. Our findings will help elucidate the molecular mechanisms underlying lineage-specific differentiation of pluripotent stem cells during human embryonic development.

Share this article

Published
October, 2013

Source

活动

  • FASEB Biological Methylation: Fundamental Mechanisms
    Porto, Portugal
    Jul 28-Aug 1, 2024
 查看所有活动

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy