Diagenode

The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway.


Li R, Chung AC, Dong Y, Yang W, Zhong X, Lan HY

The TGF-β/Smad3 pathway plays a major role in tissue fibrosis, but the precise mechanisms are not fully understood. Here we identified microRNA miR-433 as an important component of TGF-β/Smad3-driven renal fibrosis. The miR-433 was upregulated following unilateral ureteral obstruction, a model of aggressive renal fibrosis. In vitro, overexpression of miR-433 enhanced TGF-β1-induced fibrosis, whereas knockdown of miR-433 suppressed this response. Furthermore, Smad3, but not Smad2, bound to the miR-433 promoter to induce its expression. Delivery of an miR-433 knockdown plasmid to the kidney by ultrasound microbubble-mediated gene transfer suppressed the induction and progression of fibrosis in the obstruction model. The antizyme inhibitor Azin1, an important regulator of polyamine synthesis, was identified as a target of miR-433. Overexpression of miR-433 suppressed Azin1 expression, while, in turn, Azin1 overexpression suppressed TGF-β signaling and the fibrotic response. Thus, miR-433 is an important component of TGF-β/Smad3-induced renal fibrosis through the induction of a positive feedback loop to amplify TGF-β/Smad3 signaling, and may be a potential therapeutic target in tissue fibrosis.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR

Share this article

Published
December, 2013

Source

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy