Diagenode

Lyar-mediated recruitment of Brd2 to the chromatin attenuates Nanog downregulation following induction of differentiation


Noelia Luna-Peláez, Mario García-Domínguez

During development, cellular differentiation programs need of tight regulation for proper display of the activity of multiple factors in time and space. Chromatin adaptors of the BET family (Brd2, Brd3, Brd4 and Brdt in vertebrates) are transcription co-regulators tightly associated with the progression of the cell cycle. A key question regarding their function is whether they work as part of the general transcription machinery or, on the contrary, they are precisely recruited to the chromatin through specific transcription factors. Here, we report the selective recruitment of Brd2 to the chromatin by the transcription factor Lyar. We show that Lyar downregulation results in Brd2 dissociation from a number of promoters studied. On the contrary, dissociation of BET proteins from the chromatin has no effect on Lyar occupancy. Under differentiation conditions, the absence of Lyar leads to impaired downregulation of the pluripotency gene Nanog, with concomitant reduction in the upregulation of differentiation markers. Interestingly, following the induction of differentiation, Brd2 depletion exhibits the same effects as expressing a truncated Lyar molecule lacking the Brd2 interacting domain. Both approaches result in stronger Nanog repression, indicating that Lyar-mediated recruitment of Brd2 moderates Nanog downregulation when differentiation is triggered. Moreover, expression of truncated Lyar leads to impaired differentiation and increased apoptosis. Thus, Lyar-mediated recruitment of Brd2 would participate in preserving a proper timing for Nanog silencing ensuring the appropriate establishment of the differentiation program.

Tags
Bioruptor

Share this article

Published
March, 2018

Source

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy