Diagenode

CTCF is dispensable for immune cell transdifferentiation but facilitates an acute inflammatory response.


Stik G, Vidal E, Barrero M, Cuartero S, Vila-Casadesús M, Mendieta-Esteban J, Tian TV, Choi J, Berenguer C, Abad A, Borsari B, le Dily F, Cramer P, Marti-Renom MA, Stadhouders R, Graf T

Three-dimensional organization of the genome is important for transcriptional regulation. In mammals, CTCF and the cohesin complex create submegabase structures with elevated internal chromatin contact frequencies, called topologically associating domains (TADs). Although TADs can contribute to transcriptional regulation, ablation of TAD organization by disrupting CTCF or the cohesin complex causes modest gene expression changes. In contrast, CTCF is required for cell cycle regulation, embryonic development and formation of various adult cell types. To uncouple the role of CTCF in cell-state transitions and cell proliferation, we studied the effect of CTCF depletion during the conversion of human leukemic B cells into macrophages with minimal cell division. CTCF depletion disrupts TAD organization but not cell transdifferentiation. In contrast, CTCF depletion in induced macrophages impairs the full-blown upregulation of inflammatory genes after exposure to endotoxin. Our results demonstrate that CTCF-dependent genome topology is not strictly required for a functional cell-fate conversion but facilitates a rapid and efficient response to an external stimulus.

Tags
Beads

Share this article

Published
June, 2020

Source

Products used in this publication

  • default alt
    C03020002
    Unblocked Protein A beads, 8 ml
  • default alt
    C03020003
    Unblocked Protein A beads, 2.8 ml
  • default alt
    C03020004
    Unblocked protein A beads, 880 µl

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy