Diagenode

Targeted bisulfite sequencing for biomarker discovery.


Morselli, M and Farrell, C and Rubbi, L and Fehling, HL and Henkhaus, Rand Pellegrini, M

Cytosine methylation is one of the best studied epigenetic modifications. In mammals, DNA methylation patterns vary among cells and is mainly found in the CpG context. DNA methylation is involved in important processes during development and differentiation and its dysregulation can lead to or is associated with diseases, such as cancer, loss-of-imprinting syndromes and neurological disorders. It has been also shown that DNA methylation at the cellular, tissue and organism level varies with age. To overcome the costs of Whole-Genome Bisulfite Sequencing, the gold standard method to detect 5-methylcytosines at a single base resolution, DNA methylation arrays have been developed and extensively used. This method allows one to assess the status of a fraction of the CpG sites present in the genome of an organism. In order to combine the relatively low cost of Methylation Arrays and digital signals of bisulfite sequencing, we developed a Targeted Bisulfite Sequencing method that can be applied to biomarker discovery for virtually any phenotype. Here we describe a comprehensive step-by-step protocol to build a DNA methylation-based epigenetic clock.

Tags
Bioruptor

Share this article

Published
August, 2020

Source

Products used in this publication

  • default alt
    C30010020
    0.2 ml microtubes for Bioruptor® Pico
  • Bioruptor Pico
    B01080010
    Bioruptor® Pico 非接触式超声波破碎仪

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy