Diagenode

Long-range interactions between topologically associating domains shape the four-dimensional genome during differentiation.


Paulsen J, Liyakat Ali TM, Nekrasov M, Delbarre E, Baudement MO, Kurscheid S, Tremethick D, Collas P

Genomic information is selectively used to direct spatial and temporal gene expression during differentiation. Interactions between topologically associating domains (TADs) and between chromatin and the nuclear lamina organize and position chromosomes in the nucleus. However, how these genomic organizers together shape genome architecture is unclear. Here, using a dual-lineage differentiation system, we report long-range TAD-TAD interactions that form constitutive and variable TAD cliques. A differentiation-coupled relationship between TAD cliques and lamina-associated domains suggests that TAD cliques stabilize heterochromatin at the nuclear periphery. We also provide evidence of dynamic TAD cliques during mouse embryonic stem-cell differentiation and somatic cell reprogramming and of inter-TAD associations in single-cell high-resolution chromosome conformation capture (Hi-C) data. TAD cliques represent a level of four-dimensional genome conformation that reinforces the silencing of repressed developmental genes.

Tags
Antibody

Share this article

Published
May, 2019

Source

Products used in this publication

  • ChIP-seq Grade
    C15410056
    H3K9me3 Antibody

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy