Diagenode

Knockout of the longevity gene Klotho perturbs aging- and Alzheimer’s disease-linked brain microRNAs and tRNA fragments


Dubnov S. et al.

Overexpression of the longevity gene Klotho prolongs, while its knockout shortens lifespan and impairs cognition via altered fibroblast growth factor signaling that perturbs myelination and synapse formation; however, comprehensive analysis of Klotho’s knockout consequences on mammalian brain transcriptomics is lacking. Here, we report the altered levels under Klotho knockout of 1059 long RNAs, 27 microRNAs (miRs) and 6 tRNA fragments (tRFs), reflecting effects upon aging and cognition. Perturbed transcripts included key neuronal and glial pathway regulators that are notably changed in murine models of aging and Alzheimer’s Disease (AD) and in corresponding human post-mortem brain tissue. To seek cell type distributions of the affected short RNAs, we isolated and FACS-sorted neurons and microglia from live human brain tissue, yielding detailed cell type-specific short RNA-seq datasets. Together, our findings revealed multiple Klotho deficiency-perturbed aging- and neurodegeneration-related long and short RNA transcripts in both neurons and glia from murine and human brain.

Tags
D-Plex small RNA-seq

Share this article

Published
September, 2023

Source

Products used in this publication

  • Small RNA library preparation with UMI for Illumina
    C05030001
    D-Plex Small RNA-seq Kit for Illumina

Events

 See all events

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy