Diagenode

Regulation of transcription through acetylation of H3K122 on the lateral surface of the histone octamer.


Tropberger P, Pott S, Keller C, Kamieniarz-Gdula K, Caron M, Richter F, Li G, Mittler G, Liu ET, Bühler M, Margueron R, Schneider R

Histone modifications are key regulators of chromatin function. However, little is known to what extent histone modifications can directly impact on chromatin. Here, we address how a modification within the globular domain of histones regulates chromatin function. We demonstrate that H3K122ac can be sufficient to stimulate transcription and that mutation of H3K122 impairs transcriptional activation, which we attribute to a direct effect of H3K122ac on histone-DNA binding. In line with this, we find that H3K122ac defines genome-wide genetic elements and chromatin features associated with active transcription. Furthermore, H3K122ac is catalyzed by the coactivators p300/CBP and can be induced by nuclear hormone receptor signaling. Collectively, this suggests that transcriptional regulators elicit their effects not only via signaling to histone tails but also via direct structural perturbation of nucleosomes by directing acetylation to their lateral surface.

Tags
Bioruptor
Chromatin Shearing
ChIP-qPCR
Antibody
H3K4me3 (C15410003)

Share this article

Published
February, 2013

Source

Products used in this publication

  • ChIP-seq Grade
    C15410058
    H3K36me3 Antibody - ChIP-seq Grade
  • cut and tag antibody icon
    C15410003
    H3K4me3 Antibody - ChIP-seq Grade

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy