Diagenode

Chromatin Immunoprecipitation (ChIP) in Mouse T-cell Lines


Giaimo B.D. et al.

Signaling pathways regulate gene expression programs via the modulation of the chromatin structure at different levels, such as by post-translational modifications (PTMs) of histone tails, the exchange of canonical histones with histone variants, and nucleosome eviction. Such regulation requires the binding of signal-sensitive transcription factors (TFs) that recruit chromatin-modifying enzymes at regulatory elements defined as enhancers. Understanding how signaling cascades regulate enhancer activity requires a comprehensive analysis of the binding of TFs, chromatin modifying enzymes, and the occupancy of specific histone marks and histone variants. Chromatin immunoprecipitation (ChIP) assays utilize highly specific antibodies to immunoprecipitate specific protein/DNA complexes. The subsequent analysis of the purified DNA allows for the identification the region occupied by the protein recognized by the antibody. This work describes a protocol to efficiently perform ChIP of histone proteins in a mature mouse T-cell line. The presented protocol allows for the performance of ChIP assays in a reasonable timeframe and with high reproducibility.

Tags
Antibody

Share this article

Published
June, 2017

Source

Products used in this publication

  • ChIP-seq Grade
    C15410174
    H3K27ac Antibody - ChIP-seq Grade
  • cut and tag antibody icon
    C15410003
    H3K4me3 Antibody - ChIP-seq Grade
  • Mouse IgG
    C15410206
    Rabbit IgG

 


       Site map   |   Contact us   |   Conditions of sales   |   Conditions of purchase   |   Privacy policy