Bercin K Cenik et al.
Regulation of gene expression during development and stress response requires the concerted action of transcription factors and chromatin-binding proteins. Because this process is cell-type specific and varies with cellular conditions, mapping of chromatin factors at individual regulatory loci is crucial for understanding cis-regulatory control. Previous methods only characterize static protein binding. We present "TurboCas," a method combining a proximity-labeling (PL) enzyme, miniTurbo, with CRISPR-dCas9 that allows for efficient and site-specific labeling of chromatin factors in mammalian cells. Validating TurboCas at the FOS promoter, we identify proteins recruited upon heat shock, cross-validated via RNA polymerase II and P-TEFb immunoprecipitation. These methodologies reveal canonical and uncharacterized factors that function to activate expression of heat-shock-responsive genes. Applying TurboCas to the MYC promoter, we identify two P-TEFb coactivators, the super elongation complex (SEC) and BRD4, as MYC co-regulators. TurboCas provides a genome-specific targeting PL, with the potential to deepen our molecular understanding of transcriptional regulatory pathways in development and stress response.